PRZEPISY
KLASYFIKACJI I BUDOWY
STATKÓW ŚRÓDLĄDOWYCH

CZĘŚĆ VII
URZĄDZENIA ELEKTRYCZNE I AUTOMATYKA

2019
lipiec

GDAŃSK
PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW ŚRÓDLĄDOWYCH

opracowane i wydane przez Polski Rejestr Statków S.A., zwany dalej PRS, składają się z następujących części:

Część I – Zasady klasyfikacji
Część II – Kadłub
Część III – Wyposażenie kadłubowe
Część IV – Stateczność i wolna burta
Część V – Ochrona przeciwpożarowa
Część VI – Urządzenia maszynowe i instalacje rurociągów
Część VII – Urządzenia elektryczne i automatyka,

natomiast w odniesieniu do materiałów i spawania obowiązują wymagania Części IX – Materiały i spawanie, Przepisów klasyfikacji i budowy statków morskich.

Rozszerzeniem i uzupełnieniem Części VII – Urządzenia elektryczne i automatyka są następujące Publikacje:
Publikacja Nr 11/P – Próby środowiskowe wyposażenia statków,
Publikacja Nr 15/P – Tablice obciążalności prądowej kabli, przewodów i szyn dla wyposażenia okrętowego,
Publikacja nr 42/P – Próby wirujących maszyn elektrycznych,
Publikacja nr 92/P – Specific Requirements for Inland Waterways High-Speed Vessels,
Publikacja Nr 106/P – Przepisy ekologicznego znaku klasy.
Publikacja Nr 5/I – Wytyczne do przeprowadzania okresowych przeglądów klasyfikacyjnych elektrycznych urządzeń przeciwwybuchowych na statkach w eksploatacji.

Część VII – Urządzenia elektryczne i automatyka – lipiec 2019, została zatwierdzona przez Zarząd PRS w dniu 14 czerwca 2019 r. i wchodzi w życie z dniem 1 lipca 2019 r.
Z dniem wejścia w życie niniejszej Część VII, jej wymagania mają zastosowanie, w pełnym zakresie, do statków nowych.
W odniesieniu do statków istniejących wymagania niniejszej Części VII mają zastosowanie w zakresie wynikającym z postanowień Części I – Zasady klasyfikacji.

© Copyright by Polski Rejestr Statków S.A., 2019
<table>
<thead>
<tr>
<th>Nr</th>
<th>Temat</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Postanowienia ogólne</td>
<td>7</td>
</tr>
<tr>
<td>1.1</td>
<td>Zakres zastosowania</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Określenia</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Zakres nadzoru</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Dokumentacja techniczna statku</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Dokumentacja techniczna urządzeń</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Dokumentacja dostępna na statku w eksploatacji</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Wymagania ogólne</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Warunki pracy</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Materiały</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Wymagania konstrukcyjne i stopnie ochrony obudowy</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Uziemienia części metalowych nie przewodzących prądu</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Ochrona odgromowa</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Rozmieszczenie urządzeń</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Pomieszczenia zamknięte ruchu elektrycznego</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Wyposażenie elektryczne w pomieszczeniach zagrożonych wybuchem</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Podstawowe źródło energii elektrycznej</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Skład i moc podstawowego źródła energii elektrycznej</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Zasilanie z zewnętrznego źródła energii elektrycznej</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Rozdział energii elektrycznej</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Układy rozdzielcze</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Napięcia dopuszczalne</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Zasilanie ważnych urządzeń</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>Zasilanie pulpitów sterowniczego-kontrolnych ruchu statku</td>
<td>25</td>
</tr>
<tr>
<td>4.5</td>
<td>Urządzenia rozdzielcze</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Napędy elektryczne mechanizmów i urządzeń</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Wymagania ogólne</td>
<td>31</td>
</tr>
<tr>
<td>5.2</td>
<td>Napędy elektryczne urządzeń sterowych</td>
<td>32</td>
</tr>
<tr>
<td>5.3</td>
<td>Napędy elektryczne wciągarek kotwicowych i cumowniczych</td>
<td>34</td>
</tr>
<tr>
<td>5.4</td>
<td>Napędy elektryczne pomp i wentylatorów</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Oświetlenie</td>
<td>35</td>
</tr>
<tr>
<td>6.1</td>
<td>Wymagania ogólne</td>
<td>35</td>
</tr>
<tr>
<td>6.2</td>
<td>Gniazda wtyczkowe i wtyczki</td>
<td>36</td>
</tr>
<tr>
<td>6.3</td>
<td>Natężenie oświetlenia</td>
<td>36</td>
</tr>
<tr>
<td>6.4</td>
<td>Oświetlenie awaryjne</td>
<td>37</td>
</tr>
<tr>
<td>6.5</td>
<td>Światła nawigacyjne</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Łączność wewnętrzna i sygnalizacja</td>
<td>38</td>
</tr>
<tr>
<td>7.1</td>
<td>Elektryczne telegrafy maszynowe</td>
<td>38</td>
</tr>
<tr>
<td>7.2</td>
<td>Służbowa łączność wewnętrzna</td>
<td>38</td>
</tr>
<tr>
<td>7.3</td>
<td>Sygnalizacja alarmu ogólnego</td>
<td>39</td>
</tr>
<tr>
<td>7.4</td>
<td>Sygnalizacja wykrywca pożaru</td>
<td>39</td>
</tr>
<tr>
<td>7.5</td>
<td>Alarm żębrowy</td>
<td>40</td>
</tr>
<tr>
<td>7.6</td>
<td>Sygnalizacja ruchomej sterówki</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Zabezpieczenia</td>
<td>41</td>
</tr>
<tr>
<td>8.1</td>
<td>Wymagania ogólne</td>
<td>41</td>
</tr>
<tr>
<td>8.2</td>
<td>Zabezpieczenia prądnic</td>
<td>42</td>
</tr>
<tr>
<td>8.3</td>
<td>Zabezpieczenia silników</td>
<td>43</td>
</tr>
</tbody>
</table>
9 Awaryjne źródła energii elektrycznej i rozdział energii ze źródeł awaryjnych ... 45
 9.1 Wymagania ogólne .. 45
 9.2 Pomieszczenia awaryjnych źródeł energii elektrycznej ... 45
 9.3 Rozdział energii elektrycznej ze źródeł awaryjnych ... 45
10 Maszyny elektryczne .. 46
 10.1 Wymagania ogólne ... 46
 10.2 Prądnice prądu przemiennego ... 47
 10.3 Prądnice prądu stałego ... 47
 10.4 Transformatory .. 48
 10.5 Hamulce elektromagnetyczne ... 48
11 Akumulatory .. 49
 11.1 Wymagania ogólne ... 49
 11.2 Pomieszczenia akumulatorów ... 49
 11.3 Ogrzewanie i wentylacja ... 50
 11.4 Ładowanie baterii akumulatorów .. 51
 11.5 Instalowanie urządzeń elektrycznych w akumulatorni .. 51
 11.6 Rozszerzyć elektryczny silników spalinowych .. 51
12 Aparaty elektryczne i sprzęt instalacyjny .. 52
 12.1 Aparaty elektryczne ... 52
 12.2 Sprzęt instalacyjny i oświetleniowy ... 53
13 Urządzenia grzewcze .. 54
 13.1 Wymagania ogólne ... 54
 13.2 Ogrzewacze wnętrzowe .. 55
 13.3 Urządzenia kuchenne .. 55
 13.4 Podgrzewanie oleju i paliwa ... 55
14 Kable i przewody .. 56
 14.1 Wymagania ogólne ... 56
 14.2 Żyły ... 56
 14.3 Materiały izolacyjne ... 56
 14.4 Powłoki ochronne .. 57
 14.5 Przewody montażowe ... 57
 14.6 Sieć kablowa ... 58
15 Układy zdalnego sterowania i automatyki .. 64
 15.1 Zakres zastosowania ... 64
 15.2 Wymagania konstrukcyjne .. 64
 15.3 Zasilanie układów automatyki .. 66
 15.4 Układy kontrolne ... 67
 15.5 Układy sterowania ... 69
 15.6 Zalecenia dodatkowe dotyczące zakresu automatyzacji .. 71
16 Wymagania dla uzyskania dodatkowego znaku symbolu klasy ... 73
 16.1 Statki pasażerskie – znak: pas ... 74
 16.2 Zbiornikowce do przewozu materiałów niebezpiecznych – znaki: zb ADN-C, zb ADN-G, zb ADN-N 77
 16.3 Statki towarowe do przewozu materiałów niebezpiecznych w opakowaniach lub w postaci suchych ładunków masowych – znak: ADN ... 82
16.4 Żurawie pływające – znak: dp ... 83
16.5 Statki przystosowane do przewozu kontenerów – znak: con ... 83
16.6 Jednostki szybkie, znak – hsc .. 85
16.7 Statki ekologiczne – znak: ECO AIR ... 85

Załącznik 1 – Rezystancja izolacji sieci kablowej .. 86

Załącznik 2 – Wielkości mechanicznych i elektrycznych parametrów sprawdzanych podczas badań typu urządzeń oraz prób instalacji elektrycznej statku ... 84
1 POSTANOWIENIA OGÓLNE

1.1 Zakres zastosowania

1.1.1 Wymagania Części VII – Urządzenia elektryczne i automatyka mają zastosowanie do instalacji elektrycznych i układów automatyki statków wymienionych w punkcie 1.1.1 z Części I – Zasady klasifikasi kacji oraz do poszczególnych rodzajów urządzeń, układów i ich elementów zgodnie z ustaleniemi zawartymi w 1.3.

Do instalacji elektrycznych na obiektach pływających, pontonach i urządzeniach pływających zasilanych energią elektryczną tylko z zewnętrznego źródła, wymagania Części VII mają zastosowanie w ograniczonym zakresie, dotyczącym zachowania bezpieczeństwa i ochrony środowiska, każdorazowo określonym przez PRS.

1.1.2 Zaleca się stosowanie odpowiednich wymagań Części VII również do urządzeń elektrycznych instalowanych na statkach, a nie wymienionych w 1.3.2 i 1.3.3.

1.1.3 W uzasadnionych przypadkach PRS może wyrazić zgodę na odstępstwa od wymagań niniejszej Części VII, np. dla statków z ograniczonym rejonem pływania, nie połączonym ze śródlądowymi drogami państw europejskich lub może rozszerzyć zakres wymagań, np. w przypadku zastosowania na statku nowatorskich rozwiązań.

1.1.4 Obok wymagań niniejszej części wyposażenie elektryczne musi spełniać wymagania wskazane przez PRS norm krajowych lub międzynarodowych.

1.2 Określenia

Określenia dotyczące ogólnej terminologii stosowanej w Przepisach klasyfikacji i budowy statków śródlądowych (zwanych dalej Przepisami) zawarte są w Części I – Zasady klasyfikacji.

Dla potrzeb Części VII wprowadza się dodatkowo następujące określenia:

Atestowane urządzenia elektryczne – urządzenia elektryczne, które zostały poddane próbom i zatwierdzone przez właściwy organ pod względem bezpieczeństwa ich funkcjonowania w danej atmosferze wybuchowej, np.:
- urządzenia iskrobezpieczne: EEx (ia) i EEx (ib) (patrz PN-EN 60079-11);
- urządzenia z osłoną ognioszczelną: EEx (d) (patrz PN-EN 60079-1);
- urządzenia z osłoną gazową z nadeciśnieniem: EEx (p) (patrz PN-EN 60079-2);
- urządzenia z osłoną piaskową: EEx (q) (patrz PN-EN 60079-5);
- urządzenia hermetyzowane masą: EEx (m) (patrz PN-EN 60079-18);
- urządzenia o budowie wzmacnionej: EEx (e) (patrz PN-EN 60079-7).

A w a r y j n e ź r ó d l o e n e r g i i e l e k t r y c z n e j – źródło energii elektrycznej przeznaczone do zasilania niezbędnych odbiorników na statku w przypadku zaniku napięcia na szynach zbiorniczych rozdzielnicy głównej.

E l e m e n t u k ł a d u a u t o m a t y k i – najprostsza, samodzielna pod względem funkcjonalnym całość konstrukcyjna stosowana w układach automatyki (np. przekaźnik, opornik, element logiczny, czujnik, mechanizm wykonawczy).

G r u p y z a g r o ż e n i a w y b u c h e m – (patrz PN-EN 60079-10 i PN-EN 60079-0) klasyfikacja zapal nych gazów i par według maksymalnego doświadczalnego prześwitu i minimalnych prądów zapalających, a także klasyfikacja urządzeń elektrycznych, które mogą być stosowane w przestrzeniach zagrożonych wybuchem.

K l a s y t e m p e r a t u r o w e – (patrz PN-EN 60079-10 i PN-EN 60079-0) klasyfikacja gazów zapalnych i par cieczy zapalnych według ich temperatury samozapląnowa, a także klasyfikacja urządzeń elektrycznych przeznaczonych do stosowania w odpowiedniej atmosferze wybuchowej według maksymalnej temperatury ich powierzchni.

M a t e r i a l n i e p a l n y – patrz Część V – Ochrona przeciwp Storage.

7
Materiał nierozprzestrzeniający płomienia – materiał, który nie przenosi płomienia i nie podtrzymuje palenia dłużej, niż podano podczas próby opisanej w 2.28.2 normy PN-IEC 60092-101.

Napięcie bezpieczne – napięcie niestwarzające możliwości poarażenia lub poparzenia elektrycznego w warunkach normalnych. Warunek ten uważa się za spełniony, jeżeli uzwojenia transformatorów, przetwornic i innych urządzeń obniżających napięcia są elektrycznie rozdzielone i wielkość napięcia obniżonego tych urządzeń lub źródł energii elektrycznej nie przekracza:
- przy prądzie stałym – 50 V między przewodami;
- przy prądzie przemiennym – 50 V między przewodami lub między kadłubem i fazą.

Oświetlenie awaryjne – oświetlenie pomieszczeń i przestrzeni na stałe lampami zasilanymi z awaryjnego lub tymczasowego awaryjnego źródła energii elektrycznej.

Pomieszczenia zamknięte ruchu elektrycznego – pomieszczenia lub miejsca przeznaczone wyłącznie dla urządzeń elektrycznych, dostępne tylko dla upoważnionego personelu.

Przewód uziemiający ochrony odgromowej – przewód zapewniający połączenie elektryczne zwodu z uziorem.

Regulator prędkości obrotu – urządzenie, które na podstawie zadań parametrów wejściowych automatycznie kontroluje i utrzymuje określoną prędkość zmiany kursu statku.

Strefa 0 – przestrzeń, w której gazowa atmosfera wybuchowa występuje ciągle lub w długich okresach (patrz PN-EN 600079-10).

Strefa 1 – przestrzeń, w której pojawienie się gazowej atmosfery wybuchowej jest prawdopodobne w warunkach normalnej pracy (patrz PN-EN 600079-10).

Strefa 2 – przestrzeń, w której w warunkach normalnej pracy nie jest prawdopodobne pojawienie się gazowej atmosfery wybuchowej, a jeżeli pojawi się ona rzeczywiście, to może tak się stać tylko sporadycznie i tylko na krótki okres (patrz PN-EN 600079-10).

Strefa chroniona – ładownia (patrz także „strefa 1”) i przestrzeń nad pokładem (patrz także „strefa 2”), ograniczona:
- w poprzek statku – płaszczyznami pionowymi odpowiadającymi poszyciu burtowemu;
- wzdłuż statku – płaszczyznami pionowymi odpowiadającymi grodziom końcowym ładowni; i
- od góry – powierzchnią poziomą umieszczoną na wysokości 2,00 m powyżej górnego poziomu ładowni i co najmniej na wysokości 3,00 m nad pokładem.

Strefa ochrony odgromowej – strefa, która chroniona jest przed bezpośrednimi wyładowaniami atmosferycznymi.

Układ alarmowy – układ przeznaczony do sygnalizowania stanów, w których występują odchylenia od ustalonych wartości granicznych wybranych parametrów lub zmiany w wybranych warunkach pracy.

Układ automatyki – określona liczba elementów, zespołów i ich połączeń, tworzących całość konstrukcyjną i funkcjonalną przeznaczoną do wykonywania określonych czynności w zakresie sterowania i kontroli.

Układ bezpieczeństwa – układ przeznaczony do określonej ingerncji w stosunku do sterowanego urządzenia, mającej na celu zapobieżenie jego awarii lub rozszerzeniu jej skutków.

Układ sterowania automatycznego – układ przeznaczony do sterowania określonym urządzeniem bez ingerncji człowieka, zgodnie z ustalonym zadaniem.

Układ sterowania zdalnego – układ przeznaczony do zdalnego oddziaływania przez człowieka na określone urządzenie w celu realizacji zadania sterowania postawionego przez sterującego.
Układ wskazujący – układ przeznaczony do wskazywania wartości określonych wielkości fizycznych lub wskazywania określonych stanów.

Układ kontroльne – wspólne określenie dla układów alarmowego, bezpieczeństwa i wskazującego.

Urządzenia elektryczne o ograniczonym zagrożeniu wybuchem – urządzenia elektryczne, która podczas normalnej eksploatacji nie powodują iskrzenia, a temperatura ich powierzchni nie przekracza wartości wymaganej dla danej klasy temperaturowej.

Do urządzeń takich należą np.:
- trójfazowe asynchroniczne silniki klatkowe;
- prądnicze bezszczotkowe ze zbudowaniem bezstykowym;
- bezpieczniki z zamkniętym elementem topikowym;
- przyrządy elektroniczne bezstykowe;
- urządzenia elektryczne w obudowie chroniącej przed strugą wody (stopień ochrony IP 55).

Urządzenia automatyzowane – silnik, mechanizm, instalacja lub inne urządzenia wyposażone w układy automatycznego lub zdalnego sterowania.

Uziemienie – połączenie metaliczne zacisku uziemiającego urządzenia z metalowym kadłubem statku.

Ważyne urządzenia – urządzenia, których normalna praca zapewnia bezpieczeństwo żeglugi statku, bezpieczeństwo ładunku i bezpieczeństwa znajdujących się na statku ludzi.

Zespół układu automatyki – fragment układu automatyki, złożony z pewnej liczby elementów połączonych w jedną całość konstrukcyjną i funkcjonalną.

Zwód – góra część instalacji odgromowej, przeznaczona do bezpośredniego przyjmowania wyładowań atmosferycznych.

1.3 Zakres nadzoru

1.3.1 Wskazania ogólne

Ogólne zasady dotyczące postępowania klasyfikacyjnego, nadzoru nad budową statku i produkcją urządzeń oraz przeglądów, podane są w Części I – „Zasady klasyfikacji”.

1.3.2 Nadzór nad wykonaniem instalacji elektrycznej statku

1.3.2.1 Nadzorowi PRS w trakcie instalowania na statku podlegają następujące urządzenia i układy:
- podstawowe i awaryjne źródła energii elektrycznej;
- transformatory oświetleniowe i siłowe oraz przekształtniki energii elektrycznej stosowane w urządzeniach wymienionych w 1.3.2.1;
- urządzenia rozdzielcze oraz pulpity kontrolne i sterownicze;
- napędy elektryczne:
 - mechanizmów utrzymujących w ruchu silniki napędowe statku,
 - urządzeń sterowych,
 - śrub nastawnych,
 - wciągarek kotwicznych, cumowniczych i holowniczych,
 - sprzężeń podziemnych rozruchowych i podziemnych dla sygnalów dźwiękowych,
 - pomp zębate i balastowych oraz pomp ładunkowych na zbiornikach,
 - drzwi wodoszczelnych i przeciwpożarowych,
 - pomp i sprzężeń dźwiękowych instalacji gaśniczej,
 - wentylatorów przedziałów maszynowych, przedziałów ochronnych, ładowni oraz powierzchni i przestrzeni zagrożonych wybuchem;
- oświetlenie podstawowe i awaryjne pomieszczeń i miejsc rozmieszczenia ważnych urządzeń oraz dróg ewakuacyjnych;
- światła nawigacyjne;
- elektryczne telegrafy maszynowe;
- służbową łączność wewnętrzną;
1.3.2.2 Urządzenia elektryczne o charakterze gospodarczym, bytowym i technologicznym podlegają nadzorowi PRS w zakresie:

1. wpływu pracy tych urządzeń na parametry energii elektrycznej w sieci statku;
2. doboru typów i przekrojów kabli i przewodów oraz sposobu ich prowadzenia;
3. zabezpieczeń, stanu izolacji i uziemień.

1.3.3 Nadzór nad produkcją wyposażenia elektrycznego

1.3.3.1 Nadzorowi PRS w czasie produkcji podlegają następujące elementy wyposażenia elektrycznego przeznaczone do urządzeń i układów wymienionych w 1.3.2.1:

1. zespoły prądotwórcze;
2. maszyny elektryczne o mocy 50 kW (kVA) i większej;
3. transformatory o mocy większej niż 3 kVA;
4. rozdzielnice;
5. pulpity kontrolne i sterownicze;
6. elektryczne sprzęgła i hamule;
7. aparatura łączeniowa, zabezpieczająca i regulacyjna;
8. przetwornice maszynowe i urządzenia energoelektroniczne;
9. podgrzewacze oleju i paliwa;
10. akumulatory;
11. kable i przewody elektryczne;
12. czujniki i regulatorzy;
13. zawory sterowane energią pomocniczą;
14. siłowniki;
15. wzmacniacz;
16. przekaźniki elektryczne, hydrauliczne, pneumatyczne;
17. elementy logiczne;
18. inne elementy wyposażenia elektrycznego, każdorazowo określone przez PRS.

Możliwość stosowania urządzeń wyprodukowanych bez nadzoru PRS, podlega każdorazowo odrębmemu rozpatrzeniu przez PRS. Dotyczy to w szczególności urządzeń grzewczych, kuchennych i chłodniczych.

1.3.3.2 Każde urządzenie elektryczne w wykonaniu przeciwybuchowym należy poddać nadzorowi (pod względem wybuchowości) sprawowanemu przez specjalne instytucje, których dokumenty honorowane są przez PRS, niezależnie od tego, czy dane urządzenie podlega nadzorowi wynikającemu z wymagań podanych w 1.3.3.1.
1.4 Dokumentacja techniczna statku

1.4.1 Dokumentacja klasyfikacyjna statku w budowie

1.4.1.1 Przed rozpoczęciem budowy statku należy przedstawić Centrali PRS do rozpatrzenia i zatwierdzenia następującą dokumentację:

.1 Schematy zasadnicze wytwarzania i rozdziału energii elektrycznej z podstawowego i awaryjnego źródła (sieci siłowych, oświetlenia i latarni sygnalowo-pozycyjnych).
.2 Zestawienie danych obwodów z podaniem wielkości prądów, zastosowanych zabezpieczeń oraz typów i przekrojów kabeli.
.3 Schematy rozdzielnic głównych i awaryjnych, pulpity sterowniczo-kontrolnych ruchu statku.
.4 Dobór liczby i mocy źródeł energii elektrycznej potrzebnej dla zapewnienia pracy statku w warunkach określonych w 3.1, 9.1.3 i 16.1.3.1.
.5 Schematy łączności wewnętrznej i sygnalizacji.
.6 Schematy zasadnicze ważnych napędów elektrycznych zgodnie z 1.3.2.1.4.
.7 Schematy zdalnego wyłączania wentylacji, pomp paliwowych i olejowych.
.8 Schematy uziemień ochronnych, rysunki i w razie potrzeby obliczenia i instalacji odgromowej (tylko dla zbiornikowców przewożących materiały niebezpieczne).
.9 Schemat zasadniczy tras kablowych z pokazaniem pomieszczeń, przez które one przechodzą.
.10 Dane dotyczące wyposażenia elektrycznego w pomieszczeniach zagrożonych wybuchem, z podaniem sposobu jego wykonania w każdym z tych pomieszczeń.
.11 Wyniki obliczeń prądów zwarcia na szynach rozdzielnic głównej i w innych punktach układu elektroenergetycznego wraz z selektwnością zabezpieczeń (dla statków, na których zainstalowano prądnice o łącznym prądzie znamionowym wyższym niż 1000A).
.12 Plany rozmieszczenia prądnic, rozdzielnic, akumulatorów i urządzeń w wykonaniu przeciwybuchowym.
.13 Schemat instalacji oświetlenia awaryjnego z rozmieszczeniem lamp awaryjnych.
.14 Dokumentacja klasyfikacyjna zautomatyzowanych urządzeń statku w następującym zakresie:
 opis techniczny zawierający wykaz parametrów w układach – alarmowym, bezpieczeństwa oraz sterowania zdalnego i automatycznego;
 schematy funkcjonalne poszczególnych układów automatyki urządzeń, mechanizmów i instalacji, podające informacje dotyczące zasilania, właściwości funkcjonalnych, budowy, połączeń z innymi układami oraz rodzaju i wartości granicznych parametrów w tych układach;
 rysunki poszczególnych zespołów układów automatyki, takich jak pulpity, tablice z pokazaniem rozplanowania elementów zewnętrznych i wewnętrznych oraz ich rozmieszczenia na statku;
 wykaz zastosowanych w poszczególnych układach elementów i urządzeń z podaniem ich przeznaczenia, typu, producenta i zakresu regulacji.

1.4.2 Dokumentacja wykonawcza statku w budowie

Po zatwierdzeniu dokumentacji klasyfikacyjnej wymienionej w 1.4.1.1 należy przedłożyć właściwej terenowo placówce lub agencji PRS do rozpatrzenia i uzgodnienia dokumentację wykonawczą obejmującą:
.1 program prób na uwięzi i w rejsie próbny urządzeń elektrycznych i zautomatyzowanych urządzeń statku,
.2 rysunki tras kablowych i zamocowania kabli.

1.4.3 Dokumentacja klasyfikacyjna statku w przebudowie i odbudowie

1.4.3.1 Przed przystąpieniem do przebudowy lub odbudowy statku należy przedstawić Centrali PRS do rozpatrzenia i zatwierdzenia dokumentację tych instalacji, układów i wyposażenia statku, które ulegają przebudowie lub odbudowie.

1.4.3.2 W przypadku instalowania na statku istniejącym nowych, objętych wymaganiami Przepisów, urządzeń zasadniczo różniących się od dotychczasowych, należy przedstawić Centrali PRS do rozpatrzenia i zatwierdzenia uzupelniającą dokumentację nowych instalacji związanych z tymi urządzeniami, w zakresie wymaganym dla statku w budowie (patrz 1.4.1.1).
1.5 Dokumentacja techniczna urządzeń

1.5.1 Przed rozpoczęciem nadzoru nad produkcją urządzeń elektrycznych należy przedstawić do rozpatrzenia przez PRS następującą dokumentację:
 1. opis działania i podstawowe dane charakterystyczne;
 2. specyfikację materiałową, w której należy podać zastosowane elementy, przyrządy i materiały z ich technicznymi charakterystykami;
 3. rysunek zestawieniowy z przekrojami;
 4. schemat ideowy;
 5. warunki techniczne i program prób;
 6. obliczenia wytrzymałości mechanicznej wału wirnika, rysunki mocowania biegunów i komutatora dla maszyn o mocy 50 kW (kVA) i większej;
 7. dla rozdzielnic – obliczenie termicznej i dynamicznej wytrzymałości szyn i dobór aparatów do warunków zwarcowych, jeżeli prąd znamionowy prądnicy lub prądnicy pracujących równolegle przekracza 1000 A;
 8. dla zespołów prądotwórczych – dobór mocy silnika spalinowego dla prądnicy, wykaz czujników i ich nastaw oraz obliczenia drgań skrętnych;
 9. dane dotyczące statycznej lub dynamicznej odporności na zakłócenia albo podanie sposobu sprawdzenia kompatybilności elektromagnetycznej;
 10. podanie konkretnych środków tłumienia zakłóceń.

W razie konieczności PRS może wymagać przedstawienia dodatkowej dokumentacji technicznej oraz danych o niezawodności.

1.6 Dokumentacja dostępna na statku w eksploatacji

1.6.1 Na statku powinny znajdować się następujące dokumenty:
 – opis instalacji elektrycznej i kompletny komplet instrukcji ułatwiających obsługę urządzeń elektrycznych,
 – schematy zasilania instalacji elektrycznej zatwierdzone przez PRS, zawierające:
 – typy maszyn i urządzeń elektrycznych, ich moce,
 – typy i przekroje kabli,
 – nastawy zabezpieczeń i prądy znamionowe w obwodach
 dodatkowo, na statkach posiadających w symbolu klasy znak dodatkowy ADN, dokumenty wymienione w 16.2.1.1.

2 WYMAGANIA OGÓLNE

2.1 Warunki pracy

Przy projektowaniu, doborze i rozmieszczeniu urządzeń elektrycznych należy uwzględnić warunki pracy podane w 2.1.1 – 2.1.4.

2.1.1 Narażenia klimatyczne

2.1.1.1 Jako znamionowe robocze temperatury powietrza otaczającego dla urządzeń elektrycznych należy przyjmować wielkości temperatur określone w tabeli 2.1.1.1.

Tabela 2.1.1.1

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Miejsce na statku</th>
<th>Temperatura otaczającego powietrza, [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maszynownia, pomieszczenia zamknięte ruchu elektrycznego, pomieszczenia kuchenne</td>
<td>od 0 do +40°</td>
</tr>
<tr>
<td>2</td>
<td>Otwarte pokłady i przestrzenie</td>
<td>od −20 do +40°</td>
</tr>
<tr>
<td>3</td>
<td>Inne pomieszczenia</td>
<td>od 0 do +30</td>
</tr>
</tbody>
</table>

* Dla żeglugi w strefie tropikalnej należy przyjąć temperaturę otaczającego powietrza +45 °C.
2.1.1.2 Urządzenia elektryczne powinny poprawnie pracować w warunkach wilgotności względnej powietrza 80 ± 3% przy temperaturze +40 ± 2°C oraz wilgotności względnej powietrza 95 ± 3% przy temperaturze +25 ± 2°C.

2.1.2 Narażenia mechaniczne

2.1.2.1 Urządzenia elektryczne powinny poprawnie pracować w warunkach względnej wilgotności powietrza 80 ± 3% przy temperaturze +40 ± 2°C oraz wilgotności względnej powietrza 95 ± 3% przy temperaturze +25 ± 2°C.

2.1.2.2 Urządzenia elektryczne powinny być przystosowane do pracy w następujących warunkach, w których może znaleźć się statek:
- długotrwały przechył 15°,
- długotrwałe przegłębienie 5°.

Awaryjne źródła energii elektrycznej powinny być dodatkowo przystosowane do pracy przy równoczesnym długotrwałym przechyleniu statku 22,5° i przegłębieniu 10°.

2.1.2.3 Wyposażenie elektryczne powinno posiadać odpowiednią wytrzymałość mechaniczną i być umieszczone w takim miejscu, w którym nie ma niebezpieczeństwa uszkodzeń mechanicznych.

2.1.3 Parametry energii zasilającej

2.1.3.1 Urządzenia elektryczne powinny być tak wykonane, aby prawidłowo pracowały w ustalonych warunkach przy podanych w tabeli 2.1.3.1 odfluxeniodach od wartości znamionowych napięcia i częstotliwości.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Odchylone od wartości znamionowej</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>długotrwałe [%]</td>
</tr>
<tr>
<td>Napięcie</td>
<td>+6 do −10</td>
</tr>
<tr>
<td>Częstotliwość</td>
<td>±5</td>
</tr>
<tr>
<td></td>
<td>czas, [s]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: Przy zasilaniu z baterii akumulatorów należy przyjmować następujące długotrwałe odchylenia napięcia od wartości znamionowej:
- od +30 % do −25 % dla odbiorników połączonych z baterią podczas jej ładowania;
- od +20 % do −20 % dla odbiorników nie połączonych z baterią podczas jej ładowania.

2.1.4 Kompatybilność elektromagnetyczna (EMC)

2.1.4.1 Tam, gdzie PRS uzna to za stosowne, instalacje i urządzenia elektryczne powinny być poddane próbom kompatybilności elektromagnetycznej, wykonanym zgodnie z Publikacją Nr 11/P – Próby środowiskowe wyposażenia statków, w zakresie uzgodnionym z PRS.

2.2 Materiały

2.2.1 Materiały konstrukcyjne

2.2.1.1 Elementy konstrukcyjne urządzeń elektrycznych należy wykonywać z metalu lub co najmniej z materiałów izolacyjnych trudno zapalnych, odpornych na działanie wilgoci i par olejów lub należy je odpowiednio chronić przed szkodliwym działaniem tych czynników.
2.2.1.2 Śruby, nakrętki, zawiasy itp. elementy służące do mocowania pokryw urządzeń elektrycznych instalowanych na otwartych pokładach i w pomieszczeniach ze zwiększoną wilgotnością należy wykonywać z materiałów odpornych na korozję lub posiadających odpowiednie pokrycia antykorozjne.

2.2.2 Materiały izolacyjne

2.2.2.1 Materiały izolacyjne części będących pod napięciem powinny mieć odpowiednią wytrzymałość mechaniczną i elektryczną, powinny być odporne na prądy pełzające i powinny być odporne na wilgoć i pary oleju lub też skutecznie zabezpieczone przed działaniem tych czynników.

Przy obciążeniu znamiennym temperatura części przewodzących prąd i miejsca ich połączeń nie powinna przekraczać temperatury dopuszczalnej dla zastosowanego materiału izolacyjnego.

2.2.2.2 Ciecz użyte do chłodzenia nieizolowanych części urządzeń elektrycznych powinny być niepalne.

2.2.2.3 Do izolowania użwojeń maszin, aparatów i innych urządzeń zaleca się stosowanie materiałów izolacyjnych co najmniej klasy ciepłoodporności E.

2.2.2.4 Przewody stosowane do połączeń wewnętrznych w urządzeniach elektrycznych powinny mieć izolację wykonaną z materiałów co najmniej nierozprzesztrezniających płomienia, natomiast w urządzeniach z podwyższonym nagrzewaniem, a także wymienionych w rozdziale 13 – z materiału niepalnego.

2.2.2.5 Materiały izolacyjne stosowane do wyrobu kabli, powinny odpowiadać wymaganiom podanym w 14.3.

2.3 Wymagania konstrukcyjne i stopnie ochrony obudowy

2.3.1 Wymagania ogólne

2.3.1.1 Części, które w czasie eksploatacji mogą podlegać wymianie, powinny być łatwe do demontażu.

2.3.1.2 Przy stosowaniu połączeń gwintowych należy przedsięwziąć środki wykluczające samoczynne odkręcanie się śrub i nakrętek, a w miejscach wymagających częstego demontażu i otwierania – środki zabezpieczające przed ich zagubieniem.

2.3.1.3 Uszczelnienia części urządzeń elektrycznych (drzwi, pokryw, wzierników, dławien itp.) powinny zapewniać właściwy stopień ochrony w warunkach eksploatacyjnych. Uszczelki powinny być przymocowane do obudowy lub pokrywy.

2.3.1.4 Osłony, płyty czołowe i pokrywy urządzeń elektrycznych znajdujących się w miejscach dostępnych dla osób postronnych, zapobiegające dostępowi do części pod napięciem, powinny dać się otwierać tylko przy użyciu narzędzi.

2.3.1.5 Urządzenie elektryczne, w którym mogą gromadzić się skropliny, należy wyposażyć w urządzenia odwadniające. Wewnątrz urządzenia należy wykonać kanały zapewniające odpływ kondensatu ze wszystkich części urządzenia. Uzwojenia i części znajdujące się pod napięciem należy tak rozmieścić lub zabezpieczyć, aby nie podlegały oddziaływaniu skroplin zbierających się wewnątrz urządzenia.

2.3.2 Odstępy izolacyjne

2.3.2.1 Odstępy pomiędzy częściami pod napięciem o różnym potencjale lub też między częściami pod napięciem a uziemionymi częściami metalowymi lub zewnętrzną obudową, zarówno w powietrzu, jak i po powierzchni materiału izolacyjnego, powinny być odpowiednie do napięć roboczych i warunków pracy urządzenia, z uwzględnieniem właściwości stosowanych materiałów izolacyjnych.

2.3.3 Połączenia wewnętrzne

2.3.3.1 Wszystkie połączenia wewnętrzne w urządzeniach elektrycznych należy wykonywać przewodami wielodrutowymi. Możliwość zastosowania przewodów jednodrutowych podlega każdorazowo odрубnemu rozpatrzeniu przez PRS.
2.3.3.2 Połączenia wewnętrzne w rozdzielnicach, pulpitach sterowniczo-kontrolnych i innych urządzeniach rozdzielczych, przełączających itp. należy wykonywać za pomocą przewodów o przekroju co najmniej 1 mm². W obwodach sterowania, zabezpieczeń, pomiaru parametrów, sygnalizacji i łączności wewnętrznej można stosować przewody o przekroju co najmniej 0,5 mm².

W elektrycznych i elektronicznych obwodach przetwarzania i przekazywania słabych sygnałów mogą być stosowane przewody o przekroju mniejszym niż 0,5 mm², co jednak w każdym przypadku wymaga odrębnego rozpatrzenia przez PRS.

2.3.3.3 Części przewodzące prąd należy tak mocować, aby nie przenosiły dodatkowych obciążeń mechanicznych, przy czym nie należy stosować wkrętów wkręconych bezpośrednio w materiał izolacyjny.

2.3.3.4 Końce wielodrtutowych żył kabli i przewodów powinny być przygotowane odpowiednio do rodzaju stosowanego zacisku lub powinny być zaopatrzone w końcówki kablowe.

2.3.3.5 Przewody izolowane należy tak układać i mocować, aby nie nastąpiło zmniejszenie rezystancji izolacji i aby nie były one narażone na uszkodzeniu na skutek działania sił dynamicznych wywoływanych drgania i wstrząsy.

2.3.3.6 Połączenia przewodów izolowanych z zaciskami lub szynami należy wykonywać w taki sposób, aby w normalnych warunkach eksploatacji izolacja przewodów nie była narażona na przegrzanie.

2.3.3.7 Listwy zaciskowe dla obwodów o napięciu do 50 V i dla obwodów o napięciu powyżej 50 V, powinny być rozdzielone od siebie i odpowiednio oznakowane.

2.3.4 Stopnie ochrony obudów

2.3.4.1 Urządzenia elektryczne powinny mieć obudowy zapewniające stopień ochrony odpowiedni dla warunków występujących w miejscu ich zainstalowania albo należy zastosować odpowiednie środki ochrony: urządzenia – przed szkodliwym wpływem czynników otaczających i personelu – przed porażeniem prądem elektrycznym.

2.3.4.2 Minimalne stopnie ochrony obudów urządzeń elektrycznych instalowanych w pomieszczeniach i przestrzeniach statku należy dobierać zgodnie z tabelą 2.3.4.2.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Miejsce ustawienia urządzeń</th>
<th>Warunki w miejscu ustawienia urządzeń</th>
<th>Oznaczenie stopnia ochrony obudowy wg PN-EN 60529</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suche pomieszczenia mieszkalne</td>
<td>Niebezpieczeństwo dotyku części znajdujących się pod napięciem</td>
<td>IP20</td>
</tr>
<tr>
<td>2</td>
<td>Suche pomieszczenia kontrolno-sterownicze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pomieszczenie sterówki</td>
<td>Niebezpieczeństwo padania kropli wody i niebezpieczeństwo małych uszkodzeń mechanicznych</td>
<td>IP22</td>
</tr>
<tr>
<td>4</td>
<td>Przestrzenie silników i kotłów znajdujące się powyżej podlogi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pomieszczenia maszyny sterowej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Łazienki i prysznic</td>
<td>Zwiększone niebezpieczeństw występowania cieczy i/lub uszkodzeń mechanicznych</td>
<td>IP34</td>
</tr>
<tr>
<td>7</td>
<td>Przestrzenie silników i kotłów znajdujące się poniżej podlogi</td>
<td>Zwiększone niebezpieczeństw występowania cieczy i uszkodzeń mechanicznych</td>
<td>IP44</td>
</tr>
<tr>
<td>8</td>
<td>Kuchnie i pralnie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ładownie</td>
<td>Niebezpieczeństwo natrysku wody i poważnego uszkodzenia mechanicznego</td>
<td>IP55</td>
</tr>
<tr>
<td>10</td>
<td>Otwarte pokłady</td>
<td>Niebezpieczeństw występowania wody w wielkich ilościach</td>
<td>IP56</td>
</tr>
</tbody>
</table>
2.4 Uziemienia części metalowych nie przewodzących prądu

2.4.1 Części podlegające uziemieniu

2.4.1.1 Metalowe obudowy urządzeń elektrycznych wykonanych na napięcie wyższe niż bezpieczne, nie mające izolacji podwójnej lub wzmocnionej, powinny mieć zacisk uziemiający, oznaczony symbolem [zapewni symbol].

W zależności od przeznaczenia urządzenia elektrycznego powinna być przewidziana możliwość uziemienia go od zewnątrz lub od wewnątrz.

2.4.1.2 Części metalowe urządzeń elektrycznych dotykane w czasie eksploatacji i mogące w przypadku uszkodzenia izolacji znaleźć się pod napięciem (z wyjątkiem wymienionych w 2.4.1.3) powinny mieć trwałe połączenie elektryczne z częścią wyposażoną w zacisk uziemiający skutecznie połączony z kadłubem statku (patrz także 2.4.3).

2.4.1.3 Można nie stosować uziemienia dla ochrony od porażeń w przypadku:
 .1 urządzeń elektrycznych zasilanych napięciem bezpiecznym;
 .2 urządzeń elektrycznych z izolacją podwójną lub wzmocnioną;
 .3 metalowych części, które są albo w całości pokryte materiałem izolacyjnym albo, w przypadku braku takiego pokrycia, są tak odizolowane od części uziemionych i części będących pod napięciem, że w normalnych warunkach pracy urządzenia elektrycznego nie mogą znaleźć się pod napięciem ani zetknąć się z częściami uziemionymi;
 .4 obudów łożysk specjalnie izolowanych;
 .5 cokołów oprawek i elementów mocujących lamp luminescencyjnych, abażurów, odbłyśników, obudów zamocowanych do oprawek lub opraw wykonanych z materiału izolacyjnego lub wkręconych w taki materiał;
 .6 uchwytów do mocowania kabli;
 .7 pojedynczych odbiorników o napięciu do 250 V, zasilanych przez transformator separacyjny.

2.4.1.4 Ekrany i metalowe pancerze kabli powinny być uziemione.

2.4.1.5 Uzwojenia wtórne wszystkich przekładników prądowych i napięciowych powinny być uziemione.

2.4.1.6 Zbiorniki paliwa niestanowiące integralnej części kadłuba powinny być uziemione.

2.4.2 Uziemienia konstrukcji aluminiowych na statkach stalowych

Nadbudówki wykonane ze stopów aluminium mocowane do stalowego kadłuba statku, lecz od niego odizolowane, należy uziemiać specjalnym przewodem o przekroju nie mniejszym niż 16 mm², odpornym na korozję i nie powodującym korozji elektrolitycznej w miejscu połączenia nadbudówki z kadłubem. Połączenie to powinno być wykonane co najmniej dwoma przewodami w dostępnych dla przeglądów miejscach nadbudówki i odpowiednio zabezpieczone przed uszkodzeniem.

2.4.3 Zaciski i przewody uziemiające

2.4.3.1 Mocowanie przewodów uziemiających do kadłuba statku należy wykonywać śrubami o średnicy co najmniej 6 mm, jedynie do mocowania przewodów o przekroju do 2,5 mm² można stosować śruby o średnicy 4 mm, a dla przewodów o przekroju do 4 mm² – śruby o średnicy 5 mm.

Śruby te nie powinny być przeznaczone do innych celów niż mocowanie przewodów uziemiających. Śruby wkręcane do materiału (bez nakrętek) powinny być z mosiądzu lub innego materiału odpornego na korozję.

Miejsce na kadłubie, do którego mocuje się przewód uziemiający, powinno być metalicznie czyste i w odpowiedni sposób zabezpieczone przed korozją.
2.4.3.2 Ustawione na stałe urządzenia elektryczne należy uziemiać przy pomocy zewnętrznych przewodów uziemiających lub żyły uziemiającej w kablu zasilającym.

Przy zastosowaniu do uziemienia jednej z żył kabla zasilającego, żyła ta powinna być połączona z uziemioną częścią urządzenia wewnątrz jego obudowy.

Można nie stosować specjalnego uziemienia, jeżeli zamocowanie urządzenia zapewnia trwały elektryczny styk między obudowę urządzenia i kadłubem statku we wszystkich warunkach eksploatacji.

Uziemienie za pomocą zewnętrznych przewodów uziemiających należy wykonywać przewodem miedzianym. Można również stosować przewody z innego odpornego na korozję metali, pod warunkiem, że ich rezystancja nie będzie większa od rezystancji wymaganego przewodu miedzianego.

Przekrój przewodu uziemiającego wykonanego z miedzi nie powinien być mniejszy od podanego w tabeli 2.4.3.2.

<table>
<thead>
<tr>
<th>Przekrój żyły kabla przyłączonego do urządzenia stacjonarnego, [mm²]</th>
<th>Minimalny przekrój przewodu uziemiającego [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>żyła uziemiająca</td>
<td>zewnętrzny przewód</td>
</tr>
<tr>
<td>do 4</td>
<td>przekrój żyły</td>
</tr>
<tr>
<td>powyżej 4 do 16</td>
<td>przekrój żyły</td>
</tr>
<tr>
<td>powyżej 16 do 35</td>
<td>16</td>
</tr>
<tr>
<td>powyżej 35 do 120</td>
<td>połowa przekroju żyły</td>
</tr>
<tr>
<td>powyżej 120</td>
<td>70</td>
</tr>
</tbody>
</table>

2.4.3.3 Uziemienie odbiorników ruchomych oraz przenośnych należy wykonywać przy pomocy uziemiających kołków w gniazdach wtyczkowych lub przy pomocy innych uziemiających elementów stykowych w kablu zasilającym.

Przekrój żyły uziemiającej nie powinien być mniejszy od znamienowego przekroju żyły giętkiego kabla zasilającego – dla kabli do 16 mm² oraz powinien wynosić co najmniej połowę przekroju żyły tego kabla, lecz nie mniej niż 16 mm² – dla kabli o przekroju większym niż 16 mm².

2.4.3.4 Przewody i żyły uziemiające urządzenia stacjonarne, nie powinny być rozłączalne bez użycia narzędzi.

2.4.3.5 Uziemienie ekranów i metalowego pancera kabli należy wykonywać jednym z następujących sposobów:

.1 miedzianym przewodem uziemiającym o przekroju nie mniejszym niż 1,5 mm² – dla kabli o przekroju do 25 mm² i nie mniejszym niż 4 mm² – dla kabli o przekroju większym niż 25 mm²,

.2 przez odpowiednie przymocowanie pancera lub płaszcza metalowego do kadłuba statku,

.3 za pomocą pierścieni znajdujących się w dławnicach kablowych, pod warunkiem, że są one odpornie na korozję, dobrze przewodzące i sprężyste.

Uziemienia należy wykonywać na obu końcach kabli, z wyjątkiem kabli końcowych, które można uziemiać tylko od strony zasilania.

Jeżeli wyżej podane sposoby wprowadzają zakłócenia w pracy urządzenia, ekran i metalowy pancerz kabli można uziemiać w inny, uznanym lub uzgodnionym z PRS sposób.

2.4.3.6 Zewnętrzne przewody uziemiające powinny być dostępne do kontroli oraz powinny być zabezpieczone przed pożarem i uszkodzeniami mechanicznymi.

2.5 Ochrona odgromowa

2.5.1 Wymagania ogólne

2.5.1.1 Na statku należy zastosować ochronę odgromową, której strefa ochronna powinna obejmować wszystkie urządzenia wymagające ochrony przed wyładowaniami atmosferycznymi.

Na statku, na którym wtórne zjawiska wyładowań atmosferycznych mogą spowodować pożar lub wybuch, należy stosować instalację uziemiającą uniemożliwiającą powstanie iskier wtórnych.
2.5.1.2 Instalacja odgromowa powinna składać się ze zwodu, przewodów uziemiających i uziomu. Na masztach metalowych można nie stosować specjalnych instalacji odgromowych, jeżeli konstrukcyjnie przewidziane jest skuteczne elektryczne połączenie masztu z metalowym kadłubem statku lub z uziomem.

2.5.2 Zwód

2.5.2.1 Na statkach metalowych jako zwody należy wykorzystywać pionowo ustawione konstrukcje: maszty, nadbudówki itp., jeżeli przewidziane jest elektryczne połączenie ich z kadłubem statku. Dodatkowe zwody można stosować tylko w tych przypadkach, gdy elementy konstrukcyjne nie tworzą wymaganej strefy ochronnej.

2.5.2.2 Jeżeli na topie masztu metalowego umieszczono jest urządzenie elektryczne, to należy zainstalować zwód mający skuteczne elektryczne połączenie z maszem.

2.5.2.3 Na każdym maszcie lub stendze wykonanych z materiału nieprzewodzącego należy zainstalować odpowiednią instalację odgromową.

2.5.2.4 Zwody należy wykonywać z pręta o średnicy co najmniej 12 mm. Pręt ten może być wykonany z miedzi, stopów miedzi lub ze stali odpowiednio zabezpieczonej przed korozją, a dla masztów aluminiowych – z aluminium.

2.5.2.5 Zwód powinien być tak zamocowany do masztu, aby wystawał o co najmniej 300 mm ponad jego top i każde urządzenie znajdujące się na topie masztu.

2.5.3 Przewód uziemiający

2.5.3.1 Przewody uziemiające należy wykonywać z pręta, płaskownika lub przewodu wielodrutowego o przekroju co najmniej 70 mm² – jeżeli są wykonywane z miedzi lub jej stopów i o przekroju nie mniejszym niż 100 mm² – jeżeli stosuje się stal, przy czym stal powinna być odpowiednio zabezpieczona przed korozją.

2.5.3.2 Przewody uziemiające należy prowadzić po zewnętrznej stronie masztu i nadbudówek statku oraz w miarę możliwości prosto z możliwie najmniejszą liczbą zgięć, które powinny być łagodne i o możliwie największych promieniach krzywizny.

2.5.3.3 Przewody uziemiające nie powinny przechodzić przez miejsca zagrożone wybuczem.

2.5.4 Uziom

2.5.4.1 Na statkach o konstrukcji mieszanej jako uziom mogą być wykorzystane metalowe okucia dziobniczy lub inne metalowe konstrukcje zanurzone w wodzie we wszystkich warunkach pływania statku.

2.5.4.2 Należy przewidzieć możliwość uziemienia kadłuba statku w czasie, gdy statek znajduje się w doku lub na pochylni.

2.5.5 Połączenia w instalacji odgromowej

2.5.5.1 Połączenia w instalacji odgromowej należy wykonywać za pomocą spawania, zaciskania, niotowania lub zacisków śrubowych.

2.5.5.2 Powierzchnia styku połączeń powinna wynosić co najmniej 1000 mm².

Zaciski śrubowe i śruby powinny być wykonane z miedzi, jej stopów lub ze stali mającej odpowiednie zabezpieczenie antykorozyjne.

2.5.5.3 Wszystkie połączenia w instalacji odgromowej powinny być dostępne dla kontroli i zabezpieczone przed uszkodzeniami mechanicznymi.
2.6 Rozmieszczenie urządzeń

2.6.1 Urządzenia elektryczne i automatyki należy tak instalować, aby zapewniony był dogodny dostęp do elementów manipulacyjnych, jak również do wszystkich części wymagających obsługi, przeglądów i wymiany.

2.6.2 Urządzenia chłodzone powietrzem należy tak umieszczać, aby nie zasyżały powietrza chłodzącego z zęży lub innych miejsc, w których powietrze może być zanieczyszczone czynnikami szkodliwymi dla izolacji.

2.6.3 Urządzenia przewidziane do instalowania w miejscach, gdzie występują silne wibracje (większe niż podano w 2.1.2.1), których nie można zlikwidować, powinny mieć konstrukcję zapewniającą normalną ich pracę w tych warunkach lub należy je mocować na odpowiednich amortyzatorach.

2.6.4 Urządzenia należy tak mocować, aby elementy mocujące nie zmniejszały wytrzymałości i wodoszczelności pokładów, grodzi i poszycia kadłuba.

2.6.5 Odkrytych części urządzeń znajdujących się pod napięciem nie należy umieszczać w odległości mniejszej niż 300 mm mierząc poziomo i 1200 mm mierząc pionowo od niezabezpieczonych materiałów palnych.

2.6.6 Przy montażu urządzeń mających obudowy wykonane z innego materiału niż konstrukcje statku, na których są one mocowane, w razie konieczności należy zastosować odpowiednie środki zapobiegające powstawaniu korozji elektrolitycznej.

2.7 Pomieszczenia zamknięte ruchu elektrycznego

2.7.1 Drzwi zamkniętych pomieszczeń ruchu elektrycznego powinny otwierać się na zewnątrz i być zamykane kluczem. Drzwi wiodące do korytarzy i przejść mogą otwierać się do wewnątrz pod warunkiem zainstalowania zderzaków ograniczających. Na drzwiach należy umieścić odpowiedni napis ostrzegawczy. Od wewnątrz pomieszczenia drzwi powinny otwierać się bez użycia klucza.

2.7.2 Pomieszczenia zamknięte ruchu elektrycznego nie powinny przylegać do zbiorników cieczy palnych. Jeżeli wymaganie to jest konstrukcyjnie niewykonalne, to nie należy instalować na zbiorniku armatury i przyłączy rurociągów w obrębie tych pomieszczeń.

2.7.3 Nie należy wykonywać wyjść, otworów świetliskowych i innych otworów z zamkniętych pomieszczeń ruchu elektrycznego do pomieszczeń i przestrzeni zagrożonych wybuchem.

2.7.4 W pomieszczeniach zamkniętych ruchu elektrycznego, w przejściach i miejscach obsługi urządzeń elektrycznych typu otwartego należy zainstalować poręcz wykonane z materiału izolacyjnego.

2.8 Wyposażenie elektryczne w pomieszczeniach zagrożonych wybuchem

2.8.1 Wymagania niniejszego podrozdziału dotyczą wyposażenia instalowanego na statkach, na których w zamkniętych lub półzamkniętych pomieszczeniach i przestrzeniach mogą tworzyć się wybuchowe mieszaniny par, gazów lub pyłów z powietrzem.

Do takich pomieszczeń i przestrzeni zalicza się pomieszczenia baterii akumulatorów, magazyny lamp, magazyny farb, ładownie przeznaczone do przewozu ładunków niebezpiecznych i tunele rurociągów zawierających ciecz palną o temperaturze zapłonu 60°C lub niższej.

Dodatkowe wymagania dotyczące instalowania urządzeń elektrycznych na statkach otrzymujących w symbolu klasy znak dodatkowy ADN podano w 16.2 i 16.3.

2.8.2 W pomieszczeniach i przestrzeniach zagrożonych wybuchem można instalować tylko urządzenia elektryczne w wykonaniu przewidywymowym, odpowiednim dla kategorii pomieszczenia i grupy zagrożenia wybuchem.
2.8.3 Każde urządzenie w wykonaniu przeciwybuchowym należy poddać nadzorowi (pod względem wybuchowości) sprawowanemu przez instytucje, których dokumenty honorowane są przez PRS, niezależnie od tego, czy dane urządzenie podlega nadzorowi wynikającemu z wymagań podanych w 1.3.3.1.

2.8.4 W pomieszczeniach, w których pył lub włókna mogą tworzyć z powietrzem mieszanki wybuchowe, można instalować urządzenia elektryczne o stopniu ochrony nie niższym niż IP65. Jeżeli pył lub włókna mogą czasowo tworzyć z powietrzem mieszanki wybuchowe tylko w przypadku uszkodzenia obudowy lub powstania nieszczelności w pracujących urządzeniach technologicznych oraz przerw w pracy urządzeń wentylacyjnych, to w takich przypadkach można instalować urządzenia elektryczne o stopniu ochrony IP55.

Urządzenia elektryczne instalowane w tych pomieszczeniach powinny mieć taką obudowę, aby temperatura ich górnych części poziomych lub nachylonych pod kątem nie większym niż 60° do poziomu była w warunkach pracy ciągle niższa o co najmniej 75°C od temperatury tlenia się pyłów, które mogą występować w danym pomieszczeniu (temperaturę tę należy określić dla warstwy pyłu o grubości 5 mm).

2.8.8 W zamkniętych lub półzamkniętych pomieszczeniach, w których nie występują pary lub gazy mogące spowodować wybuch, ale mających otwory prowadzące do pomieszczeń lub przestrzeni zagrożonych wybuchem, należy w zasadzie instalować urządzenia elektryczne w wykonaniu przeciwybuchowym.

Urządzenia elektryczne w wykonaniu innym niż przeciwybuchowe można instalować, jeżeli spełnione są następujące warunki:

.1 przerwa w pracy urządzeń wentylacyjnych wywołuje sygnał alarmowy (optyczny i akustyczny) oraz powoduje wyłączenie zasilania urządzeń elektrycznych (w przypadkach uzasadnionych – ze zwłoką czasową);

.2 przewidziana jest blokada zapewniająca możliwość załączenia urządzeń elektrycznych dopiero po dostatecznym przewietrzeniu pomieszczenia (powietrze w pomieszczeniu powinno być wymienione co najmniej 10 razy).

2.8.9 W ładowniach przeznaczonych do przewozu ładunków niebezpiecznych pod względem wybuchowym nie należy instalować urządzeń elektrycznych i kabli. Jeżeli instalowanie urządzeń elektrycznych jest konieczne, to powinny one być w wykonaniu przeciwybuchowym: iskrobezpieczne (Exi), przewietrzane lub z osłoną gazową w ciśnieniu (Exp), z osłoną ognioszczelną (Ebd) lub o budowie wzmiocnionej (Exe).

W ładowniach przeznaczonych do sporadycznego przewozu w pojemnikach ładunków niebezpiecznych można instalować urządzenia elektryczne w wykonaniu innym niż przeciwybuchowe pod warunkiem, że istnieje możliwość całkowitego odłączenia instalacji elektrycznej przez usunięcie specjalnych połączeń innych niż bezpieczniki na czas przewozu ładunków niebezpiecznych pod względem wybuchowym.

2.8.10 W przestrzeniach i pomieszczeniach zagrożonych wybuchem można instalować tylko kable przeznaczone dla urządzeń elektrycznych zainstalowanych w tych pomieszczeniach. Kable przelotowe przechodzące przez wyżej wymienione pomieszczenia i przestrzenie powinny spełniać wymagania podane w 2.8.11 do 2.8.15.
2.8.11 Kable instalowane w pomieszczeniach i przestrzeniach zagrożonych wybuchem powinny mieć:
.1 metalowy pancerz ochronny lub opłot ekranujący pokryty niemetalową powłoką ochronną, lub
.2 płaszcz ołowiany oraz dodatkowe zabezpieczenia mechaniczne, lub
.3 osłonę miedzianą albo ze stali nierdzewnej (tylko dla kabli z izolacją mineralną).

2.8.12 Kable przechodzące przez pomieszczenia i przestrzenie zagrożone wybuchem należy zabezpieczyć przed uszkodzeniami mechanicznymi.

2.8.13 Wszystkie ekrany oraz metalowe panerze kabli obwodów zasilania silników elektrycznych i obwodów oświetleniowych, przechodzących przez pomieszczenia i przestrzenie zagrożone wybuchem lub zasilających urządzenia elektryczne usytuowane w tych pomieszczeniach, powinny być uziemione co najmniej na obu końcach.

2.8.14 Kable obwodów iskrobezpiecznych mogą być wykorzystane tylko przez jedno urządzenie i należy je ułożyć oddzielnie od innych kabli.

2.8.15 Kable przenośnych urządzeń elektrycznych nie powinny przechodzić przez pomieszczenia i przestrzenie zagrożone wybuchem, z wyjątkiem kabli obwodów iskrobezpiecznych.

3 PODSTAWOWE ŹRÓDŁO ENERGII ELEKTRYCZNEJ

3.1 Skład i moc podstawowego źródła energii elektrycznej

3.1.1 Na każdym statku należy przewidzieć podstawowe źródło energii elektrycznej o mocy wystarczającej do zasilania wszystkich niezbędnych urządzeń elektrycznych w warunkach określonych w 3.1.3. Tym źródłem energii elektrycznej mogą być:
– prądnice z niezależnym napędem,
– prądnice wałowe,
– baterie akumulatorów.

3.1.2 Liczba i moc prądnic czy baterii akumulatorów wchodzących w skład podstawowego źródła energii powinny być takie, aby zapewniały one możliwość:
.1 zasilania ważnych urządzeń w warunkach określonych w 3.1.3;
.2 uruchomienia silnika z największym prądem rozruchowym i o najcięższym rozruchu, przy czym rozruch tego silnika nie powinien powodować takiego obniżenia napięcia i częstotliwości w sieci, które mogłoby spowodować wypadnięcie z synchronizmu lub zatrzymanie silnika napędowego albo odląnięcie pracujących maszyn i aparatów.

3.1.3 Przy określaniu składu i mocy podstawowego źródła energii elektrycznej, należy uwzględnić następujące warunki pracy statku:
.1 jazdę na trasie,
.2 manewry
.3 inne, zgodnie z przeznaczeniem statku
oraz porę dnia, współczynniki jednoczesności i rodzaj pracy urządzeń elektrycznych.

3.1.4 Jeżeli podstawowym źródłem energii elektrycznej są baterie akumulatorów, to pojemność ich powinna być wystarczająca do spełnienia wymagań zawartych w 3.1.2.1 w ciągu 3 godzin bez doładowywania.

3.1.5 Prądnica wałowa może być podstawowym źródłem energii elektrycznej, jeżeli spełnione są następujące warunki:
.1 prądnica wałowa napędzana jest od silnika głównego pracującego praktycznie ze stałą prędkością obrotową;
.2 istnieje możliwość uruchomienia silnika głównego w przypadku unieruchomienia prądnicy z niezależnym napędem;
3 dodatkowe źródło energii elektrycznej wymagane w 3.1.11 jest niezależne od działania silnika głównego.

3.1.6 Prądnice powinny mieć zapewnioną regulację napięcia w granicach określonych w 10.2 i 10.3.

3.1.7 Charakterystyki regulatorów silników napędowych prądu przemiennego przeznaczonych do pracy równolegle powinny być takie, aby w zakresie od 20 do 100% obciążenia znamionowego obciążenie czynne każdego z zespołów prądotwórczych nie różniło się od wartości proporcjonalnego obciążenia o więcej niż 15% znamionowej mocy czynnej największej z prądnic przemianczonych do pracy równolegle lub 25% znamionowej mocy czynnej rozpatrywanej prądnicy – w zależności od tego, która z tych wartości jest mniejsza.

Zespoły prądotwórcze prądu przemiennego, przewidziane do pracy równolegle powinny być wyposażone w urządzenie do dokładnej regulacji zmiany obciążenia w zakresie nie przekraczającym 5% mocy znamionowej przy częstotliwości znamionowej.

3.1.8 Zespoły prądotwórcze prądu przemiennego przeznaczone do pracy równolegle należy wyposażyć w taki układ do kompensacji biernego spadku napięcia, aby w czasie pracy równolegle różnice w obciążeniu mocą bierną każdej prądnicy (w stosunku do jej mocy znamionowej) nie przekraczały 10% znamionowego obciążenia biernego największej prądnicy lub 25% mocy znamionowej najmniejszej prądnicy – w zależności od tego, która z tych wartości jest mniejsza.

3.1.9 Jeżeli przewidziana jest praca równoległa prądnic prądu przemiennego, to w rozdzielnicy głównej należy zainstalować urządzenia synchronizujące. W przypadku zastosowania samoczynnej synchronizacji należy przewidzieć lampy do ręcznej synchronizacji.

3.1.10 W przypadku równoległej pracy prądnicy prądu stałego z baterią akumulatorów, prądnica powinna być wyposażona w samoczynny regulator napięcia i nie powodować spadku napięcia baterii akumulatorów.

3.1.11 Każdy statek należy wyposażyć w dodatkowe źródło energii elektrycznej o takiej mocy, aby w przypadku wypadnięcia z pracy znamionowego źródła energii, dodatkowe źródło mogło zapewnić załadowanie urządzeń niezbędnych dla zapewnienia bezpieczeństwa ruchu i zdolności manewrowych statku przez okres nie krótszy niż 30 min.

3.1.12 Możliwość zastosowania innych źródeł energii elektrycznej podlega każdorazowo odrębnemu rozpatrzeniu przez PRS.

3.2 Zasilanie z zewnętrznego źródła energii elektrycznej

3.2.1 Jeżeli przewidziane jest zasilanie sieci statku z zewnętrznego źródła energii elektrycznej, to należy na nim zainstalować przyłącze zasilania ze źródła zewnętrznego.

Przyłącze zasilania ze źródła zewnętrznego powinno być połączone z rozdzielnicą główną kablami ułożonymi na stałe.

Dopuszcza się, po uzgodnieniu z PRS, możliwość połączenia kabla zasilającego sieć statku z zewnętrznego źródła energii elektrycznej bezpośrednio do rozdzielniczki głównej.

3.2.2 W przyłączu zasilania ze źródła zewnętrznego należy przewidzieć:
.1 zaciski do podłączenia kabla giętka;
.2 urządzenia łącznościowe i zabezpieczające; jeżeli długość kabla pomiędzy rozdzielnicą główną a przyłączem wynosi mniej niż 10 m, to można w przyłączu nie instalować zabezpieczeń;
.3 woltomierz lub lampki sygnalizujące obecność napięcia na zaciskach;
.4 urządzenie do kontroli biegunowości lub kolejności faz lub możliwość przyłączenia takiego urządzenia;
.5 zaciski do uzemienia przewodu neutralnego doprowadzonego ze źródła zewnętrznego;
.6 tabliczkę wskazującą wysokość napięcia, rodzaj prądu i częstotliwość;
.7 w przyłączu zasilania ze źródła zewnętrznego lub w jego pobliżu powinno znajdować się urządzenie do mechanicznego zamocowania końca kabla giętkiego doprowadzonego do przyłącza oraz uchwytu dla podwieszenia kabla.

3.2.3 Jeżeli nie przewiduje się pracy równoległej pomiędzy zewnętrznym źródłem energii elektrycznej a źródłami energii elektrycznej zainstalowanymi na statku, z wyjątkiem czasu niezbędnego do przejęcia obciążenia, to układ połączeń powinien mieć blokadę uniemożliwiającą połączenie tych źródeł do długotrwałej pracy równoległej.

3.2.4 Jeżeli pobór prądu ze źródła zewnętrznego nie przekracza 63 A, zamiast przyłącza można stosować złącza wtykowe, pod warunkiem że:

.1 przewód giętki służący do połączenia złącza na statku ze złączem źródła zewnętrznego będzie wyposażony we wtyczkę do połączenia ze źródłem zewnętrznym i w przesłonę gniazdo wtykowe do połączenia z instalacją elektryczną statku (dla napięcia bezpiecznego mogą być na obu końcach przewodu wtyczki o budowie uniemożliwiającej powstanie zwarć przy upadku wtyczki na metalowy pokład);

.2 przy złączu wtykowym będzie zainstalowany łącznik umożliwiający dokonanie połączenia w stanie bezprądowym;

.3 złącza wtykowe spełniają wymagania określone w 12.2.4, a przekroje żyły uziemiającej lub przewodu neutralnego – w 2.4.3.3.

Powyższe postanowienia nie mają zastosowania dla statków towarowych do przewozu materiałów niebezpiecznych.

3.2.5 Jeżeli przewiduje się zasilanie energią elektryczną z instalacji statkowej (wytworzoną na statku lub pobieraną ze źródła zewnętrznego) innych jednostek pływających, można do tego celu stosować złącza wtykowe. Dla napięć wyższych niż bezpieczne przewody przeznaczone do przekazywania energii powinny mieć na wejściu (licząc od źródła energii) wtyczkę, a na wyjściu gniazdo wtykowe.

3.2.6 W przypadku takiego zasilania innych jednostek pływających należy przewidzieć skrzynkę łączeniową podłączenia przewodu do przekazywania energii wyposażoną w łącznik oraz zapobieganie od zwarć i przeciążeń. Dla napięć wyższych niż bezpieczne i/lub prądu większego niż 16A, należy zainstalować łącznik umożliwiający dokonanie łączeń w stanie bezprądowym.

3.2.7 Do zasilania jednostek w zestawach pchanych można również stosować złącza wtykowe. W obwodach zasilających jednostki zestawów pchanych napięciem wyższym niż bezpieczne, należy stosować układy uniemożliwiające załączenie napięcia zasilającego w przypadku braku połączenia lub nieprawidłowego połączenia złącza wtykowych oraz wyłączać napięcie, w przypadku rozzerwania zestawu pchanego.

3.2.8 Do zasilania z zewnętrznego źródła należy stosować wyłącznie kable giętkie, ognioodporne oraz odpornie na działanie wody i oleju.

4 ROZDZIAŁ ENERGII ELEKTRYCZNEJ

4.1 Układy rozdzielcze

4.1.1 W instalacjach na statku można stosować następujące układy rozdziału energii elektrycznej:

.1 dla prądu stałego i przemiennego jednofazowego:

.1.1 dwuprzewodowy izolowany;

.1.2 dwuprzewodowy z jednym przewodem uziemionym;

.1.3 jednoprzewodowy z wykorzystaniem kadłuba statku jako przewodu powrotnego, w ograniczonym zakresie dla instalacji lokalnych (na przykład: do rozruchu silników spalinowych, do ochrony katodowej);

.2 dla prądu przemiennego trójfazowego:

.2.1 czteroprzewodowy z uziemionym punktem neutralnym, lecz bez wykorzystania kadłuba statku jako przewodu powrotnego;
.2.2 trójprzewodowy izolowany;
.2.3 trójprzewodowy z uziemionym punktem neutralnym, z wykorzystaniem kadłuba statku jako przewodu powrotnego, z wyjątkiem obwodów końcowych.

4.1.2 Stosowanie innych układów będzie odrębnie rozpatrywane przez PRS.

4.1.3 W układzie wykorzystującym kadłub jako przewód powrotny, obwody końcowe urządzeń przewodowych i oświetlenia powinny być izolowane od kadłuba. Połączenie uziemiające bieguna lub fazy do kadłuba powinno być wykonane w głównej lub pomocniczej rozdzielniczy w sposób umożliwiający łatwe roztaczanie i pomiar izolacji obwodów izolowanych. Przekrój przewodu uziemiającego do kadłuba powinien być nie mniejszy niż przekrój żyły zasilającej.

4.1.4 Układ wykorzystujący kadłub jako przewód powrotny oraz taki, w którym uziemiono punkt lub przewód neutralny jest niedopuszczalny na zbiornikowcach do przewozu materiałów niebezpiecznych i statkach podlegających wymaganiom Przepisów ADN.

4.1.5 Układ wykorzystujący kadłub jako przewód powrotny jest niedopuszczalny w miejscach, w których kadłub wykonany jest z aluminium.

4.1.6 Przy zasilaniu zestawów pchanych wszystkie fazy lub bieguny muszą być izolowane.

4.1.7 W układach trójfazowych prąd przemiennego należy tak wykonać przyłączenie odbiorników, aby prądy w poszczególnych fazach nie różniły się o więcej niż 15%.

4.1.8 W instalacjach łączności wewnętrznej i sygnalizacji (opisanych w rozdziale 7) należy stosować układy dwuprzewodowe izolowane.

4.2 Napięcia dopuszczalne

4.2.1 Napięcie znamionowe prądnicy może być do 5% wyższe niż napięcie znamionowe odbiorników energii elektrycznej.

4.2.2 Napięcia znamionowe na zaciskach odbiorników nie powinny przekraczać wartości podanych w tabeli 4.2.2.

Tabela 4.2.2

<table>
<thead>
<tr>
<th>Rodzaj instalacji</th>
<th>Napięcie dopuszczalne</th>
<th>Prąd stały</th>
<th>Prąd przemienny jednofazowy</th>
<th>Prąd przemienny trójfazowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Odbiorniki siłowe, urządzenia grzewcze podłączone na stałe.</td>
<td>250 V</td>
<td>250 V</td>
<td>500 V</td>
<td></td>
</tr>
<tr>
<td>B. Instalacja oświetleniowa, sygnalizacyjna i łączności wewnętrznej urządzeń podłączonych na stałe.</td>
<td>250 V</td>
<td>250 V</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>C. Gniazda wtyczkowe do zasilania urządzeń przenośnych do pracy na pokładach otwartych, w zamkniętych lub wilgotnych przestrzeniach o ścianach metalowych, innych niż kotły i zbiorniki</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.1 z transformatorem separacyjnym lub bez niego,</td>
<td>50 V</td>
<td>50 V</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>.2 z transformatorem separacyjnym zasilającym pojedyncze urządzenia (oba przewody tych układów powinny być izolowane od masy),</td>
<td>–</td>
<td>250 V</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>.3 urządzenia ze wzmacnioną lub podwójną izolacją.</td>
<td>250 V</td>
<td>250 V</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>D. Gniazda wtyczkowe dla kontenerów, przenośnych pomp i wentylatorów, gdzie zastosowano do uziemienia jedną z żył kabla zasilającego.</td>
<td>250 V</td>
<td>250 V</td>
<td>500 V</td>
<td></td>
</tr>
<tr>
<td>E. Gniazda wtyczkowe do zasilania urządzeń przenośnych do pracy w zbiornikach lub kotłach.</td>
<td>50 V</td>
<td>50 V</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
4.2.3 Przy gniazdach wtyczkowych na napięcie wyższe od bezpiecznego, zainstalowanych w pomieszczeniach o zwiększonej wilgotności lub szczególnie wilgotnych powinny być umieszczone napisy nakazujące stosowanie odbiorników z izolacją podwójną lub wzmocnioną albo odbiorników separowanych od napięcia wyższego niż bezpieczne.

4.2.4 Możliwość stosowania wyższych napięć podlega każdorazowemu rozpatrzeniu przez PRS.

4.3 Zasilanie ważnych urządzeń

4.3.1 Z szyn rozdzielnicy głównej powinny być zasilane oddzielnymi obwodami następujące odbiorniki:
 .1 napędy elektryczne urządzeń sterowych;
 .2 napędy elektryczne urządzeń kotwiczych;
 .3 napędy elektryczne pomp pożarniczych;
 .4 napędy elektryczne pomp zębowych;
 .5 rozdzielnice świateł nawigacyjnych;
 .6 rozdzielnice grupowe oświetlenia podstawowego;
 .7 rozdzielnice grupowe innych ważnych urządzeń, zgrupowanych na zasadzie jednorodności spełnianych przez nie funkcji;
 .8 rozdzielnice pulpitu sterowniczo-kontrolnego ruchu statku;
 .9 urządzenia sterowania śrub nastawnych;
 .10 napędy elektryczne środków aktywnego sterowania statkiem (np. sterów strumieniowych, pędników, stabilizatorów, itp.);
 .11 urządzenia do ładowania baterii akumulatorów rozruchowych i baterii akumulatorów zasilających ważne urządzenia;
 .12 inne, nie wymienione wyżej odbiorniki, określone każdorazowo przez PRS.

4.3.2 Dopuszczalne jest zasilanie odbiorników wymienionych w .5, .6, .7, .9 z rozdzielnic pulpitu sterowniczo-kontrolnego ruchu statku oddzielnymi obwodami wyposażonymi w aparatę łączeniową i zabezpieczającą.

4.3.3 Obwody końcowe o prądzie znamionowym większym niż 16 A nie powinny służyć do zasilania więcej niż jednego odbiornika.

4.3.4 Silniki ważnych urządzeń powinny być zasilane z oddzielnych obwodów końcowych.

4.3.5 Zasilanie układów automatyki powinno odpowiadać wymaganiom podanym w 15.3.

4.4 Zasilanie pulpitów sterowniczo-kontrolnych ruchu statku

4.4.1 W przypadku umieszczenia w pulpicie urządzeń elektrycznych, nawigacyjnych, radiowych oraz automatyki i zdanego sterowania mechanizmami głównymi i pomocniczymi, urządzenia te powinny być zasilane niezależnymi obwodami.

Urządzenia wymienione w 4.3.1 można zasilac z rozdzielnic umieszczonych w pulpicie sterowniczno-kontrolnym ruchu statku pod warunkiem, że zostaną spełnione wymagania 4.4.2 do 4.4.5.

4.4.2 Rozdzielnice pulpitu sterowniczo-kontrolnego powinny być zasilane dwoma niezależnymi obwodami bezpośrednio z rozdzielnicy głównej lub poprzez transformator albo jednym obwodem z rozdzielnicy głównej i jednym obwodem z rozdzielnicy awaryjnej, jeżeli przewidziano na statku awaryjne źródło energii elektrycznej i jest nim zespół prądotwórczy.

4.4.3 Rozdzielnica pulpitu powinna mieć przełącznik obwodów zasilania przewidzianych w 4.4.2. Jeżeli zastosowano przełącznik automatyczny, to należy również zapewnić możliwość ręcznego wyboru obwodów zasilania, przy czym należy zastosować odpowiednie urządzenie blokujące.

4.4.4 Do zasilania odbiorników wymienionych w 4.3.1 z rozdzielnic pulpitu sterowniczo-kontrolnego należy stosować niezależny obwód zasilania dla każdego odbiornika.
4.4.5 W pulpicie sterowniczo-kontrolnym należy zainstalować świetlne urządzenie sygnalizujące obecność napięcia zasilającego.

4.4.6 Lampki sygnalizacyjno-kontrolne urządzeń niezbędnych do ruchu statku powinny być wyposażone w środki umożliwiające sprawdzenia ich działania, np. przycisk „lamp test”.

4.4.7 Należy zapewnić możliwość odczytania wskazań instrumentów kontrolnych, we wszystkich warunkach oświetlenia. Powinna być przy tym zapewniona możliwość regulacji jasności podświetlenia wskaźników, jednakże bez możliwości całkowitego obnżenia podświetlenia. Źródła światła nie powinny utrudniać odczytu wskazań instrumentów kontrolnych.

4.5 Urządzenia rozdzielcze

4.5.1 Konstrukcje rozdzielnic

4.5.1.1 Konstrukcje wsporce, płyty czołowe i obudowy rozdzielnic powinny być wykonane z metali lub innego niepalnego materiału.

4.5.1.2 Rozdzielnice powinny mieć dostatecznie sztywną konstrukcję, wytrzymałą na naprężenia mechaniczne powstające w warunkach eksploatacji oraz przy zwarcach.

4.5.1.3 Rozdzielnice powinny być z kroplami padającymi pionowo. Ochrona ta nie jest wymagana, jeżeli rozdzielnice przeznaczone są do ustawienia w miejscach, gdzie nie istnieją warunki umożliwiające przenikanie do rozdzielnicy padających pionowo kropel.

4.5.1.4 Rozdzielnice przeznaczone do zainstalowania w miejscach dostępnych dla nieupoważnionych osób powinny mieć drzwiczki otwierane specjalnym kluczem, jednakowym dla wszystkich rozdzielnic na statku.

4.5.1.5 Rozdzielnice główne i pulpity sterownicze należy wyposażyć w poręcze umieszczone na przedniej ich stronie. Rozdzielnice z dostępem od tyłu należy wyposażyć w poziome poręcze umieszczone z tyłowej strony rozdzielnicy.

4.5.1.6 Pola prądnic rozdzielnic głównych powinny być oświetlone lampami zasilanymi z prądnicy przed jej wyłącznikiem głównym.

4.5.1.7 Oświetlenie płyty czołowej rozdzielnic powinno być tak wykonane, aby nie powodowało oślepiania i nie utrudniało obserwacji przyrządów.

4.5.1.8 Konstrukcja rozdzielnic typu przyściennego powinna zapewniać dostęp do części wymagających obsługi.

4.5.2 Szyny i przewody nie izolowane

4.5.2.1 Dopuszczalne przy obciążeniach znamionowych i przy zwarcianiach graniczne temperatury szyn zbiorczych i nieizolowanych połączeń lub jednosekundową obciążalność zwarcia dopuszczalną dla szyn miedzianych należy przyjmować według odpowiednich norm.

4.5.2.2 Szyny wyrównawcze należy dobierać na co najmniej połowę prądu znamionowego największej prądnicy przyłączonej do rozdzielnicy głównej.

4.5.2.3 Jeżeli prądny styka się lub znajduje w pobliżu części izolowanych, to wpływ cieplny szyny w czasie pracy lub przy zwarciu nie powinien powodować przekroczenia temperatury dopuszczalnej dla danego materiału izolacyjnego.

4.5.2.4 Biegunowość szyn i nieizolowanych połączeń odnoszących się do różnych biegunów należy oznaczać następującymi barwami:
1. czerwona dla biegunu dodatniego;
2. niebieska dla biegunu ujemnego;
3. czarna lub zielone i żółte poprzeczne paski dla przewodów uziemiających;

Przewód wyrównawczy należy oznaczyć barwą tego biegunu, w którym się znajduje oraz dodatkowo białymi poprzecznymi paskami.

4.5.2.5 Szyny i połączenia nie izolowane, należące do różnych faz, należy oznaczyć następującymi barwami:
1. żółta dla 1 fazy;
2. zielona dla 2 fazy;
3. fioletowa dla 3 fazy;
4. jasnoniebieska dla przewodu neutralnego;
5. zielone i żółte poprzeczne paski dla przewodów uziemiających.

4.5.2.6 Połączenia szyn należy wykonać tak, aby uniemożliwić powstawanie korozji w miejscach ich połączenia.

4.5.3 Dobór aparatów i obliczenie prądów zwarcia

4.5.3.1 Aparaty elektryczne należy tak dobierać, aby w normalnych warunkach pracy nie przekroczyć ich znamionowego napięcia, obciążalności ani dopuszczalnej temperatury. Ponadto powinny one wytrzymywać bez uszkodzeń przewidywane przeciążenia i prądy w stanach przejściowych, nie osiągając przy tym niebezpiecznych temperatur.

Aparatura zabezpieczająca przed skutkami zwarcia powinna uwzględniać specyficzne warunki sieci elektrycznej statku, a w szczególności:
− współczynnika mocy przy zwarciu w sieciach prądu przemiennego;
− wartości składowych podprzejściowej i przejściowej prądu zwarcia.

Należy uwzględnić co najmniej następujące przypadki zwarcia:
− od strony prądnicy;
− na szynach zbiorczych rozdzielnicy głównej;
− na szynach zbiorczych rozdzielnicy awaryjnej;
− w odbiornikach i rozdzielnicach zasilanych bezpośrednio z rozdzielnicy głównej.

Obliczenie minimalnego prądu zwarcia należy wykonać tylko w przypadku niezbędnym do oceny układu.

4.5.3.2 Znamionowy prąd wyłączalny aparatów elektrycznych przeznaczonych do wyłączania prądów zwarcowych nie powinien być mniejszy niż spodziewany prąd zwarcowy w miejscu ich zainstalowania.

4.5.3.3 Znamionowy prąd załączalny aparatów elektrycznych przeznaczonych do wyłączania prądów zwarcowych nie powinien być mniejszy niż wartość szczytowa spodziewanego prądu zwarcowego w miejscu ich zainstalowania.

4.5.3.4 W obwodach o znamionowym prądzie obciążenia większym niż 320 A dla zabezpieczenia przed przeciżeniaem należy stosować wyłączniki. Zaleca się stosować wyłączniki samoczynne w obwodach o prądzie większym niż 200 A.

4.5.3.5 Wyłączniki w obwodach prądnic szeregowo-bocznikowych przeznaczonych do pracy równoleglej powinny mieć biegun łącznika w przewodzie wyrównawczym tak sprzężony z pozostałymi biegunami łącznika, aby zamykał się on przed przyłączeniem prądnic do szyn, a otwierał po ich odłączeniu.

4.5.3.6 Obliczenie prądów zwarcia należy wykonać zgodnie z normami lub metodami obliczeniowymi zatwierdzonymi przez PRS.

4.5.3.7 Przy obliczaniu spodziewanego prądu zwarcia należy uwzględnić równoważną impedancję układu od strony uszkodzenia. Źródlę prądu powinno zawierać wszystkie prądnice, które mogą być załączone równolegle i wszystkie silniki pracujące równocześnie. Prądy pochodzące od prądnic i silników powinny być obliczone na podstawie ich charakterystyk.
W przypadku braku dokładnych charakterystyk dla silników prądu przemiennego należy przyjąć następujące skuteczne wartości:

- początek zwarcia – 6,25Iₙ,
- w chwili T od początku zwarcia – 2,5Iₙ,
- w chwili 2T od początku zwarcia – 1Iₙ,
- wartość szczytowa – 8Iₙ,

gdzie: T – okres przebiegu prądu przemiennego,
Iₙ – sumaryczny prąd znamionowy silników elektrycznych.

W przypadku prądu stałego, do określenia maksymalnej wartości prądu zwarcia dostarczonego przez silniki elektryczne, należy przyjąć prąd równy 6-krotnie wartości sumy prądów znamionowych silników elektrycznych pracujących równolegle.

Obliczenia należy wykonać dla wszystkich przypadków zwarcia niezbędnych dla scharakteryzowania układu.

4.5.4 Rozmieszczenie aparatów i przyrządów pomiarowych

4.5.4.1 Każdy obwód rozdzielnic powinien mieć niemanewrowy łącznik wyłączający wszystkie bieguny lub fazy.

Można nie instalować łączników w każdym obwodzie w rozdzielnicach mających łączniki centralne i zasilające obwody końcowe oświetlenia oraz w zabezpieczonych bezpiecznikami obwodach przyrządów, urządzeń blokady, sygnalizacji i lokalnego oświetlenia rozdzielnie.

4.5.4.2 Aparaty, przyrządy pomiarowe i kontrolne należące do poszczególnych prądnic oraz do ważnych urządzeń należy umieszczać w polach odnoszących się do tych prądnic lub urządzeń.

4.5.4.3 Na rozdzielnicach głównej i awaryjnej dla każdej prądnicy prądu stałego należy zainstalować po jednym amperomierz i woltomierz.

4.5.4.4 Na rozdzielnicach głównej i awaryjnej dla każdej prądnicy prądu przemiennego należy zainstalować następujące przyrządy pomiarowe:

.1 amperomierz z przelącznikiem do pomiaru prądu w każdej fazie;
.2 woltomierz z przelącznikiem do pomiaru napięć fazowych lub międzyprzewodowych;
.3 częstotliwośćmierz (można stosować podwójny częstotliwośćmierz z przelącznikiem na każdą prądnicę dla prądnic pracujących równolegle);
.4 watomierz (jeżeli moc przekracza 50 kVA).

4.5.4.5 Na statkach z instalacją elektryczną małej mocy, na których nie przewiduje się równoleglej pracy prądnic, można zainstalować na rozdzielnicach głównej i awaryjnej tylko jeden komplekt przyrządów pomiarowych wymienionych w 4.5.4.3 i 4.5.4.4, jeżeli zapewniona będzie możliwość pomiarów na każdej zainstalowanej prądnicy.

4.5.4.6 W obwodach ważnych urządzeń o prądzie znamionowym 20 A i większym, należy zainstalować amperomierz. Można je umieścić na rozdzielnicach głównej lub przy stanowiskach sterowniczych.

Mogą być stosowane amperomierze z przelącznikami, lecz nie mniej niż 1 amperomierz na 6 odbiorników.

4.5.4.7 Na rozdzielnicach głównej w obwodzie zasilania ze źródła zewnętrznego należy przewieździć:

.1 urządzenia łączeniowe i zabezpieczające;
.2 woltomierz lub lampki sygnalizacyjne.

4.5.4.8 W układach izolowanych należy zainstalować na rozdzielnicach głównych i awaryjnych urządzenia do pomiaru rezystancji izolacji oddzielne dla każdej sieci lub jedno urządzenie przełączalne.

Dla sieci o napięciu wyższym niż 50 V należy przewieździć sygnalizację świetlną i dzwiękową obniżając się rezystancji izolacji sieci elektrycznej statku względem kadłuba poniżej wartości 100 Ω/V.

4.5.4.9 Przyrządy pomiarowe powinny mieć skalę z zapasem przewyższającym znamionowe wartości mierzonych wielkości.
Należy stosować przyrządy pomiarowe o zakresie pomiarowym skali nie mniejszym niż:

1. woltomierz – 120% napięcia znamionowego;
2. amperomierz dla prądnic pracujących indywidualnie oraz odbiorników – 130% prądu znamionowego;
3. amperomierz dla prądnic pracujących równolegle – zakres skali prądu obciążenia równy 130% prądu znamionowego; zakres skali prądu zwrotnego równy 15% prądu znamionowego (ostatnie wymaganie dotyczy tylko prądnic prądu stałego);
4. watomierz dla prądnic pracujących indywidualnie – 130% mocy znamionowej;
5. watomierz dla prądnic pracujących równolegle – zakres skali mocy obciążenia równy 130% i zakres skali mocy zwrotnego równy 15% mocy znamionowej;
6. częstotliwościomierz – ±10% częstotliwości znamionowej.

4.5.4.10 Znamionowe napięcia, prądy i mocy obwodów elektrycznego napędu głównego oraz prądnic należy oznaczać na skali przyrządów pomiarowych w postaci wyraźnych znaków.

4.5.4.11 Tam, gdzie to jest możliwe łączniki należy tak instalować i przyłączać do szyn, aby w pozycji "wyłączone" styki ruchome oraz cała związana z łącznikiem aparatura zabezpieczająca i kontrolna były w stanie beznapięciowym.

4.5.4.12 Jeżeli w obwodach obejściowych rozdzielnic przewidziane są łączniki i bezpieczniki, to bezpieczniki powinny być umieszczone pomiędzy stykami ruchomymi a stykami bezpieczników i bezpieczników powinny być umieszczone w pozycji beznapięciowej.

4.5.4.13 Bezpieczniki instalowane w rozdzielnicach stojących na fundamentzie znajdującym się na poziomie podłogi powinny być umieszczone nie niżej niż 150 mm i nie wyżej niż 1800 mm od poziomu podłogi.

4.5.4.14 Bezpieczniki należy tak instalować w rozdzielnicach, aby były łatwo dostępne, a wymiana wkładek topikowych nie stwarzała zagrożenia dla obsługującego personelu.

4.5.4.15 Bezpieczniki wkręcone należy tak instalować, aby przewody zasilające były przyłączone do dolnej wstawki.

4.5.4.16 Bezpieczniki chroniące bieguny lub fazy jednego obwodu należy instalować obok siebie w pionie lub poziomie, z uwzględnieniem konstrukcji bezpiecznika.

Rozmieszczenie bezpieczników w obwodach prądu przemiennego zgodnie z kolejnością faz powinno być z lewa na prawo lub z góry w dół. W obwodach prądu stałego bezpiecznik biegunu dodatniego należy umieszczać z lewej strony lub u góry bliżej obsługującego.

4.5.4.17 Ręczne regulatorzy napięcia w rozdzielnicach głównych lub awaryjnych należy instalować w pobliżu przynależnych do prądnic przyrządów pomiarowych.

4.5.4.18 Amperomierze prądnic szeregowo-bocznicowych, przeznaczonych do pracy równoleglej, należy instalować w obwodzie biegunu nie łączącego się z przewodem wyrównawczym.

4.5.4.19 Przyrządy umieszczane na częściach ruchomych lub wysuwnych należy przyłączać za pomocą giętkich przewodów wielodrutowych.

4.5.4.20 Części przyrządów i aparatów zainstalowanych na tylnej części drzwięczek rozdzielnic, będące pod napięciem wyższym niż 50V, powinny być zabezpieczone przed przypadkowym dotknięciem w momencie, gdy drzwi zastaną otwarte przez personel obsługujący.

4.5.4.21 Aparaty, przyrządy, płyty czołowe i obwody odchodzące z rozdzielnic powinny mieć napisy informacyjne.
Stan załączenia aparatów łączeniowych powinien być oznaczony. Oprócz tego dla obwodów prądowych należy podawać znamionowy prąd zastosowanego bezpiecznika oraz nastawienie wyłączników samoczynnych, przekaźników cieplnych i innych łączników.

4.5.5 Sygnalizacja świetlna

4.5.5.1 Do sygnalizacji świetlnej należy stosować barwy podane w tabeli 4.5.5.1.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Barwa</th>
<th>Znaczenie</th>
<th>Rodzaj sygnału</th>
<th>Typowe zastosowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>czerwona</td>
<td>niebezpieczeństwo</td>
<td>migający</td>
<td>Alarm w stanach niebezpiecznych wymagających bezzwłoczej interwencji.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ciągły</td>
<td>Ogólny alarm w stanach niebezpiecznych oraz w stanach niebezpiecznych ujawnionych, lecz nie usuniętych.</td>
</tr>
<tr>
<td>2</td>
<td>żółta</td>
<td>uwaga</td>
<td>migający</td>
<td>Stan nienormalny, lecz nie wymagający bezzwłocznej interwencji.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ciągły</td>
<td>Stan pośredni pomiędzy stanem nienormalnym i stanem bezpiecznym. Stan istniejący nienormalny ujawniony, lecz nie usunięty.</td>
</tr>
<tr>
<td>3</td>
<td>zielona</td>
<td>bezpieczeństwo</td>
<td>migający</td>
<td>Wskazanie, że mechanizmy rezerwowe weszły do pracy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ciągły</td>
<td>Normalny stan pracy i działania.</td>
</tr>
<tr>
<td>4</td>
<td>niebieska</td>
<td>instrukcje i informacje</td>
<td>ciągły</td>
<td>Mechanizmy i urządzenia gotowe do rozruchu. Napięcie w sieci. Wszystko w porządku.</td>
</tr>
<tr>
<td>5</td>
<td>biała</td>
<td>ogólne informacje</td>
<td>ciągły</td>
<td>Sygnały stosowane w razie konieczności. Napisy dotyczące działania automatycznego. Inne dodatkowe sygnały.</td>
</tr>
</tbody>
</table>

4.5.5.2 Ewentualne stosowanie innych sposobów sygnalizacji świetlnej niż podane w 4.5.5.1 (np. symbole literowych) będzie odrębnie rozpatrywane przez PRS.

4.5.6 Umieszczenie rozdzielnic

4.5.6.1 Rozdzielnice należy umieszczać w miejscach łatwo dostępnych, w których nie ma możliwości koncentracji gazów, pary wodnej, pyłu oraz wyziewów kwasowych.

4.5.6.2 Jeżeli rozdzielnice o stopniu ochrony IP10 i niższym umieszczone są w specjalnym pomieszczeniu, szafie lub wnęce, to miejsca te powinny być wykonane z niepalnego materiału lub pokryte takim materiałem.

4.5.6.3 Rozmieszczenie rurociągów i zbiorników w pobliżu urządzeń elektrycznych powinno odpowiadać wymaganiom określonym w Części VI – Urządzenia maszynowe i instalacje rurociągów.

4.5.6.4 Rozdzielnicę światel nawigacyjnych należy umieścić w sterowni, w miejscu łatwo dostępnym i dobrze widocznym dla obsługującego personelu.

4.5.7 Dostęp do rozdzielnic

4.5.7.1 Z przodu rozdzielnic powinny być przejścia o szerokości nie mniejszej niż 600 mm.

4.5.7.2 Wzdłuż rozdzielnic wolno stojących należy zapewnić z tyłu przejście o szerokości nie mniejszej niż 600 mm przy długości rozdzielnic do 3 m oraz nie mniejszej niż 800 mm dla rozdzielnic dłuższych.

Między wolno stojącymi rozdzielnicami z odkrytymi częściami pod napięciem, znajdującymi się w pomieszczeniach zamkniętych ruchu elektrycznego, szerokość przejść nie powinna być mniejsza niż 1000 mm.

4.5.7.3 Przestrzeń z tyłu wolno stojących rozdzielnic, gdzie znajdują się odkryte części pod napięciem, powinna być odgrodzona i zamykana drzwiami. Należy przewidzieć urządzenie do zamocowania drzwi w położeniu otwartym.
4.5.7.4 Jeżeli długość wolno stojącej rozdzielnic przekracza 3 m, to z przestrzeni za nią powinny być co najmniej dwa wyjścia, rozmieszczone po przeciwwległej względem długości stronach rozdzielnic i prowadzące do pomieszczenia, w którym jest ona ustawiona. Zezwala się, aby jedne drzwi prowadziły do pomieszczenia przyległe, z którego istnieje co najmniej drugie wyjście.

4.5.7.5 Szerokość przejść wymienionych w 4.5.7.1 i w 4.5.7.2 należy mierzyć od najbardziej wystających części aparatury i konstrukcji rozdzielnic do najbardziej wystających części urządzeń lub konstrukcji kadłuba statku.

4.5.7.6 Podłogi przy rozdzielnicach zasilanej napięciem wyższym niż 50V należy pokryć matą izolacyjną, w miejscach dostępnych dla personelu podczas obsługi aparatury zainstalowanej w tej rozdzielniczy.

5 NAPĘDY ELEKTRYCZNE MECHANIZMÓW I URZĄDZEŃ

5.1 Wymagania ogólne

5.1.1 Stanowiska sterownicze oraz automatyka napędów powinny spełniać mające zastosowanie wymagania określone w 15.2, a zasilanie układów automatyki – wymagania określone w 15.3.

5.1.2 Mechanizmy z napędem elektrycznym powinny mieć sygnalizację świetlną o załączeniu napędu.

5.1.3 Urządzenia z automatycznym, zdalnym i ręcznym sterowaniem powinny być tak wykonane, aby przy przechodzeniu na sterowanie ręczne, sterowanie automatyczne lub zdalne wyłączało się samoczynnie. Sterowanie ręczne powinno być niezależne od automatycznego lub zdalnego.

5.1.4 Mechanizmy z elektrycznym i ręcznym napędem powinny mieć urządzenia blokujące, uniemożliwiające równoczesną pracę tych napędów.

5.1.5 Należy przewidzieć odpowiednią blokadę, jeżeli wymagane jest wzajemne uzależnienie pracy urządzeń lub załączanie ich do pracy w określonej kolejności.

5.1.6 Można stosować urządzenie wyłączające blokadę, pod warunkiem że będzie ono zabezpieczone przed przypadkowym wyłączaniem blokady. W pobliżu tego urządzenia należy umieścić napis informacyjny podający jego przeznaczenie oraz zakazujący operowania nim przez personel nie upoważniony. Takiego urządzenia nie należy stosować dla mechanizmów wymienionych w 5.1.4.

5.1.7 Rozruch mechanizmów, których silniki elektryczne lub aparatura wymagają podczas normalnej pracy dodatkowej wentylacji, powinien być możliwy tylko przy działającej wentylacji.

5.1.8 Układy sterowania napędów (np. wciągarki, urządzenia do naciągania lin, urządzenia sprzęgające), których praca w pewnych warunkach może zagrażać bezpieczeństwu statku lub ludzi, należy wyposażyć w łączniki bezpieczeństwa, zapewniające odłączenie zasilania napędu elektrycznego. łączniki bezpieczeństwa należy pomalować na kolor czerwony. W pobliżu łącznika należy umieścić napis o jego przeznaczeniu.

Łączniki te należy zabezpieczyć przed możliwością przypadkowego uruchomienia.

5.1.9 Łączniki bezpieczeństwa należy umieszczać na stanowiskach sterowniczych lub w innych miejscach, wynikających z potrzeby zapewnienia bezpieczeństwa eksploatacji.

5.1.10 W elektrycznych napędach urządzeń i mechanizmów, w których dla uniknięcia uszkodzeń lub awarii wymagane jest ograniczenie ruchu, powinny być przewidziane łączniki krańcowe zapewniające skuteczne wyłączenie silnika elektrycznego.

5.1.11 Aparatura nastawczo-rozruchowa powinna być tak wykonana, aby uruchomienie silnika było możliwe tylko z położenia zerowego.
5.1.12 Aparatura nastawczo-rozruchowa powinna być tak wykonana, aby nie można było rozewrzeć obwodu wzbudzenia bocznikowego bez zapewnienia odpowiednich środków do rozładowania pola obwodu wzbudzenia.

5.1.13 Bezpośrednio do sieci mogą być łączone tylko takie silniki elektryczne prądu przemiennego, które odpowiadają wymaganiom 3.1.2.2 i 14.6.3.3.

5.1.14 Należy przewidzieć łączniki niemanewrowe do odłączania napięcia z każdego silnika o mocy 0,5 kW lub większej i jego aparatury nastawczo-rozruchowej. Jeżeli aparatura nastawczo-rozruchowa umieszczona jest w rozdzielnicy głównej lub pomocniczej usytuowanej w tym samym pomieszczeniu co silniki napędu elektrycznego oraz widoczna jest z miejsca ich ustawienia, to można do tego celu stosować łączniki niemanewrowe umieszczone w rozdzielnicy.

Jeżeli podane wyżej wymagania dotyczące umieszczenia aparatury nastawczo-rozruchowej nie są spełnione, to należy przewidzieć:

1. urządzenie blokujące w stanie wyłączonym łącznik w rozdzielnicy; lub
2. dodatkowy łącznik w pobliżu silnika; lub
3. takie umieszczenie bezpieczników w każdym biegunie lub fazie, aby mogły być one łatwo wyjęte i wstawione przez obsługujący personel.

5.2 Napędy elektryczne urządzeń sterowych

5.2.1 W uzupełnieniu do wymagań zawartych w Części III – Wyposażenie kadłubowe i w Części VI – Urządzenia maszynowe i instalacje rurociągów, urządzenia sterowe powinny odpowiadać wymaganom niniejszego podrozdziału.

5.2.2 Zasilanie napędów elektrycznych urządzenia sterowego powinno spełniać wymagania podane w 4.3.

5.2.3 Urządzenia sterowe z napędem elektrycznym lub elektrohydraulicznym zaleca się zasilać dwoma niezależnymi obwodami, prowadzonymi w miarę możliwości oddzielnymi trasami bezpośrednio z rozdzielnicy głównej.

5.2.4 Zaleca się, aby jeden z obwodów zasilających był zasilany z rozdzielnicy awaryjnej.

5.2.5 Wskaźnik położenia steru powinien być zasilany niezależnie od urządzenia sterowego.

5.2.6 Elektryczny i elektrohydrauliczny napęd steru powinien zapewniać:

1. przekładanie steru z burty na burtę w czasie i o kąt wychylenia podane w Części VI – Urządzenia maszynowe i instalacje rurociągów;
2. ciągłe przekładanie steru z burty na burtę w czasie 30 minut przy całkowicie zanurzonej płetwie steru i największej prędkości naprzód, odpowiadającej temu zanurzeniu;
3. ciągłą pracę w ciągu jednej godziny przy największej prędkości eksploatacyjnej podczas jazdy naprzód i przy przekładaniu steru z burty na burtę o kąt wynikający z częstości przełożen 350/h;
4. możliwość postępu zahamowanego silnika elektrycznego przy zasilaniu znamionowym w czasie 1 minuty ze stanu nagrzanego (tylko w przypadku sterów z bezpośrednim napędem elektrycznym);
5. dostateczną wytrzymałość napędu elektrycznego przy obciążeniach powstających przy maksymalnej prędkości jazdy wstecz statku; zaleca się stosowanie takich rozwiązań, aby było możliwe przekładanie steru przy średniej prędkości jazdy statku wstecz.

5.2.7 Załączanie i wyłączenie silnika elektrycznego napędu steru powinno odbywać się ze sterowni.

5.2.8 Urządzenie rozruchowe elektrycznego napędu urządzenia sterowego powinno zapewniać samoczynny rozruch napędu steru przy powrocie napięcia następującym po przerwie w zasilaniu.

5.2.9 Urządzenia zdalnie uruchamiane (także poza sterówką) powinny być zamontowane na stałe i zaopatrzone we wskaźniki określające stan pracy („włączone” lub „wyłączone”).
5.2.10 Jeżeli dwa urządzenia sterowe – podstawowe i rezerwowe mają napęd elektryczny, to obwody zasilania i sterowania tych urządzeń powinny być niezależne.

 Każde urządzenie sterowe powinno mieć oddzielnial silnik.

5.2.11 Jeżeli rezerwowe urządzenie sterowe jest zasilane z zespołu prądotwórczego, który nie pracuje ciągle w czasie podróży statku, a jego rozruch wymaga czasu dłuższego niż 5 sekund, to należy przewidzieć urządzenie do zasilania rezerwowego urządzenia sterowego podczas rozruchu zespołu prądotwórczego.

5.2.12 Silniki napędu elektrycznego urządzenia sterowego powinny być przeznaczone do pracy ciągłej.

5.2.13 Jeżeli przewidziano przełącznik zasilania silników z różnych obwodów zasilających, to przekroje kabli zasilających należy obliczać na największe możliwe obciążenie. Przełącznik ten powinien być zainstalowany w sterówce.

5.2.14 Na stanowisku sterowania należy przewidzieć sygnalizację świetlną i dźwiękową:

.1 zaniku napięcia i braku fazy w obwodzie zasilania każdego zespołu energetycznego,
.2 zaniku napięcia w obwodzie zasilania układu sterowania,
.3 spadku poziomu oleju w zbiorniku hydraulicznym poniżej dopuszczalnego dla bezpiecznej pracy maszyny sterowej oraz spadku ciśnienia roboczego w układzie hydraulicznym,
.4 awarii regulatora prędkości zwrotu,
.5 awarii wymaganych urządzeń buforowych.

5.2.15 Jeżeli napęd urządzenia sterowego zasilany jest poprzez wyłącznik zwarcia, to układ kontroli zaniku fazy nie jest wymagany.

5.2.16 Jako organ ręcznego sterowania na pulpicie sterowania można stosować koło sterowe, rękojeści lub przyciski. Kierunek obrotu koła sterowego albo kierunku ruchu dźwigni aparatu sterowniczego w czasie sterowania powinien być zgodny z kierunkiem przekładania steru. Przy sterowaniu przyciskami należy je tak umieścić, aby przycisk znajdujący się po prawej stronie powodował ruch steru na prawą burtę, a znajdujący się po lewej stronie – ruch steru na lewą burtę.

5.2.17 Jeżeli zastosowano układy typu ster – śruba lub pędniki cykloidalne, to z położenia dźwigni jednoznacznie powinien wynikać kierunek działającego na statek naporu (posuwu). Odstępstwo od tego wymagania podlega rozpatrzeniu i zatwierdzeniu przez Administrację.

5.2.18 Na statkach dopuszcza się instalowanie autopilotów sterujących maszyną sterową. Autopilot powinien być wyposażony w sygnalizację świetlną włączenia do pracy oraz sygnalizację świetlną i dźwiękową zanęnięcia sterowania i wadliwej pracy żyroskopu.

5.2.19 Jeżeli zastosowano podwójne urządzenia typu ster – śruba, napęd strugowodny, pędnik cykloidalny lub inne urządzenia do zmiany kierunku posuwu jako podstawowe urządzenia do manewrowania statkiem, to należy przewidzieć niezależne systemy sterowania tymi urządzeniami napędowo-sterowymi.

5.2.20 Regulator prędkości obrotu (jeśli występuje) powinien posiadać funkcję monitorowania. Należy przewidzieć sygnalizację niedopuszczalnego odchylenia od wartości znamionowej napięcia zasilania oraz niedopuszczalnego spadku prędkości obrotowej żyroskopu. Gotowość pracy regulatora prędkości obrotu powinna być sygnalizowana przez zieloną lampkę sygnalizacyjną na stanowisku sterowania.

5.2.21 W razie występowania innych układów sterowania (innych niż regulator prędkości obrotu) na stanowisku sterowania należy przewidzieć sygnalizację ich załączenia. Musi istnieć możliwość niezwłocznego przełączania z jednego układu na drugi. Regulator prędkości obrotu nie może w żaden sposób zakłócać pracy tych układów.

5.2.22 Zasilanie regulatora prędkości obrotu musi być niezależne.
5.3 Napędy elektryczne wciągarek kotwicznych i cumowniczych

5.3.1 W uzupełnieniu do wymagań zawartych w Części VI – Urządzenia maszynowe i instalacje rurociągów, napęd wciągarek kotwicznych i cumowniczych powinien spełniać wymagania niniejszego podrozdziału.

5.3.2 Zasilanie napędów elektrycznych wciągarek kotwicznych powinno spełniać wymagania podane w 4.3.1.
Na statkach towarowych obwód zasilający wciągarkę kotwiczną można podłączyć do rozdzielnic wciągarek ładunkowych lub do innej rozdzielnicy, pod warunkiem jej zasilania bezpośrednio z rozdzielnicy głównej.

5.3.3 Silniki elektryczne klatkowe prądu przemiennego do napędu wciągarek kotwicznych i cumowniczych po 30-minutowej pracy przy obciążeniu znamionowym powinny wytrzymać postój w stanie zahamowanym, przy napięciu znamionowym w czasie nie krótszym niż 30 sek. dla wciągarek kotwicznych i 15 sek. dla cumowniczych. Dla silników z przełączoną liczbą biegunów wymagane to powinno być spełnione dla pracy z uwojeniem wywołującym największy moment rozruchowy.

Silniki elektryczne prądu stałego i pierścieniowe prądu przemiennego powinny wytrzymywać postój pod prądem w wyżej określonych warunkach przy momencie dwa razy większym od znamionowego, przy czym napięcie może być mniejsze niż znamionowe.
Po próbie postoju w stanie zahamowanym, przyrost temperatury nie powinien wynosić więcej niż 130% wartości dopuszczalnej dla zastosowanej izolacji.

5.3.4 Jeżeli wciągarka wykorzystywana jest jako kotwiczną i cumowniczą, to stopnie przeznaczone do cumowania, nie przystosowane do podnoszenia kotwicy, powinny mieć odpowiednią ochronę zapobiegającą przeciążeniu silnika.

5.4 Napędy elektryczne pomp i wentylatorów

5.4.1 Zasilanie napędów elektrycznych pomp i wentylatorów powinno spełniać wymagania podane w 4.3.1.

5.4.2 Silniki elektryczne napędu pomp paliwowych, transportowych oleju smarowego, wirówek i wentylatorów pomieszczeń maszynowych powinny mieć urządzenia zdalnego wyłączania, znajdujące się poza pomieszczeniami maszynowymi.
Urządzenia te należy umieścić w widocznych miejscach pod szklaną osłoną i opatrzyć w napisy informacyjne.

5.4.3 Miejskowe uruchomienie pomp pożarniczych i ężrowych powinno być możliwe nawet w przypadku uszkodzenia ich obwodów zdalnego sterowania.

5.4.4 Silniki elektryczne wentylatorów wentylacji ogólnej, ładowi oraz kuchni powinny mieć łączniki umieszczone w miejscach łatwo dostępnych z pokładu.

5.4.5 Silniki elektryczne wentylatorów wciągowych sponad płyt kuchennych powinny mieć dodatkowe łączniki umieszczone wewnątrz pomieszczeń kuchni.
6 OŚWIETLENIE

6.1 Wymagania ogólne

6.1.1 We wszystkich pomieszczeniach, miejscach i przestrzeniach statku, których oświetlenie jest niezbędne w celu zapewnienia bezpieczeństwa żeglugi, obsługi mechanizmów i urządzeń, przebywania i ewakuacji pasażerów i załogi, powinny być zainstalowane na stałe oprawy oświetleniowe.

6.1.2 Oprawy oświetleniowe instalowane w pomieszczeniach, miejscach i przestrzeniach, w których klosze mogą być narażone na uszkodzenie mechaniczne, powinny mieć siatki ochronne lub klosze wykonane z materiału odpornego na uderzenia mechaniczne.

6.1.3 Oprawy oświetleniowe należy tak instalować, aby nie następowało nadmiernie nagrzewanie kabli i innych znajdujących się w pobliżu materiałów, powodujące przekroczenie dopuszczalnych temperatur.

6.1.4 W oświetlanych lampami luminesencyjnymi pomieszczeniach i miejscach, w których znajdują się widoczne części wirujące, należy stosować środki w celu wyeliminowania zjawiska stroboskopowego.

6.1.5 Lampy oświetlenia zewnętrznego powinny być zainstalowane w taki sposób, aby nie powodowały oślepiania kierujących statkiem i nie wpływały ujemnie na rozpoznawalność świateł nawigacyjnych.

6.1.6 W pomieszczeniach, miejscach i przestrzeniach oświetlanych lampami wyładowczymi, nie zapewniającymi ciągłości świecenia przy wahaniach napięcia określonych w 2.1.3.1 należy przewidzieć również oprawy oświetleniowe z lampami żarowymi.

6.1.7 Akumulatornie i inne pomieszczenia zagrożone wybuchem należy oświetlać przez gazoszczelne świetlik lampami umieszczonymi w sąsiednich bezpiecznych pomieszczeniach lub lampami w wykonaniu przeciwwybuchowym, zainstalowanymi wewnątrz pomieszczeń.

6.1.8 W obwodach oświetlenia należy stosować łączniki dwubiegunowe. W suchych pomieszczeniach mieszkalnych i służbowych można stosować łączniki jednobiegunowe w obwodach pojedynczych opraw oświetleniowych i grup opraw pobierających prąd nie większy niż 6 A oraz opraw zasilanych napięciem bezpiecznym.

6.1.9 Zewnętrzne stacjonarne oświetlenie statku powinno mieć łączniki centralne umieszczone w sterni.

6.1.10 Łączniki do wylaczania oświetlenia przestrzeni za wolno stojącymi rozdzielnicami należy umieszczać przy każdym wejściu za rozdzielnicę.

6.1.11 Rozdzielnice oświetlenia podstawowego powinny być zasilane oddzielnymi obwodami przeznaczonymi wyłącznie do tego celu.

Z rozdzielnic oświetlenia podstawowego, oprócz obwodów końcowych oświetlenia, mogą być zasilane napędy elektryczne mało ważnych urządzeń o mocy do 0,25 kW oraz pojedyncze ogrzewacze wnętrzowe, pobierające prąd nie większy niż 10 A.

6.1.12 Obwody stacjonarnego oświetlenia ładowni powinny być zasilane niezależnie i powinny być wyposażone w aparaturę łączeniową i zabezpieczającą niedostępną dla osób nieupoważnionych oraz w świetlną sygnalizację obecności napięcia w poszczególnych obwodach oświetleniowych.

6.1.13 Obwody końcowe oświetlenia pomieszczeń mieszkalnych powinny zasilać nie więcej niż:

1. 10 punktów świetlnych przy napięciu do 50 V;
2. 14 punktów świetlnych przy napięciu do 127 V;
3. 18 punktów świetlnych przy napięciu do 230 V.

Dopuszcza się instalowanie większej liczby punktów świetlnych – pod warunkiem, że urządzenia zapewniające obliczone są na prąd znamionowy nie większy niż 10 A.

Obwody końcowe oświetlenia przedziałów maszynowych, pokładów i ładowni nie powinny być obciążone prądem większym niż 20 A.

Wentylatory kabinowe i inne drobne odbiorniki można zasilać z obwodów końcowych oświetlenia.
6.1.14 Oświetlenie w pomieszczeniu maszynowym i w miejscach, w których znajdują się urządzenia chłodnicze, hydrauliczne lub silniki elektryczne, powinno być zasilane z co najmniej dwóch niezależnych obwodów.

6.2 Gniazda wtyczkowe i wtyczki

6.2.1 Gniazda wtyczkowe oświetlenia przenośnego należy zainstalować co najmniej:
.1 na pokładzie, w pobliżu wciągarki kotwicznej;
.2 w pomieszczeniu urządzenia sterowego;
.3 w pomieszczeniach maszynowych;
.4 za rozdzielnicą główną;
.5 w pomieszczeniach zamkniętych ruchu elektrycznego;
.6 w sterowni.

6.2.2 Gniazda wtyczkowe instalowane w sieciach o różnych napięciach powinny różnić się konstrukcją, tak aby możliwe było połączenie tylko wtyczki odpowiedniej dla danego gniazda.

6.2.3 Gniazda wtyczkowe oświetlenia przenośnego i innych odbiorników energii elektrycznej instalowane na otwartych pokładach powinny być przystosowane do wkładania wtyczki z dołu.

6.3 Natężenie oświetlenia

6.3.1 Natężenie oświetlenia pomieszczeń i przestrzeni powinno być nie mniejsze, niż podano w tabeli 6.3.1. Wymagania te nie dotyczą statków, których instalacja elektryczna zasilana jest napędem niższym niż 30 V.

Normatywy oświetlenia ogólnego podane w tabeli 6.3.1 odnoszą się do poziomu na wysokości 800 mm nad podłogę pomieszczenia, natomiast normatywy oświetlenia mieszkanego (ogólnego i miejscowego) odnoszą się do powierzchni roboczych.

Tabela 6.3.1

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Pomieszczenia i powierzchnie</th>
<th>Natężenie oświetlenia w luksach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oświetlenie inne niż żarowe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ogólne + miejskowe</td>
</tr>
<tr>
<td>1</td>
<td>Sterówka na poziomie 800 mm nad podłogą</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Pomieszczenia maszynowe, pomieszczenia rozdzielnic, stanowisk sterownicznych i kontrolnych na poziomie 800 mm nad podłogą</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>powierzchnie rozdzielnic i pulpitów sterownicznych i kontrolnych</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>stanowiska sterowania silnikami głównymi</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>przejścia między silnikami, mechanizmami, schody itp.</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Pomieszczenia maszyn sterowanych na poziomie 800 mm nad podłogą</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Akumulatory na poziomie 800 mm nad podłogą</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>Przejścia i miejsca komunikacyjne na pokładzie i w pobliżu trapów na poziomie 800 mm nad podłogą</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Przestrzenie zaburtowe w okolicy opuszczenia lodzi i tratw ratunkowych w pobliżu wodnicy ładunkowej</td>
<td>–</td>
</tr>
</tbody>
</table>

Natężenie oświetlenia pulpitów sterownicznych umieszczonych w sterówce może być obniżone do wartości optymalnej dla żeglugi nocnej.

Zaleca się stosowanie układów umożliwiających regulację natężenia oświetlenia takich pulpitów.
6.4 Oświetlenie awaryjne

6.4.1 Naświetlenie oświetlenia awaryjnego w pomieszczeniach i miejscach wyszczególnionych w 6.3.1 powinno wynosić co najmniej 10% naświetlenia ogólnego podanego w tabeli 6.3.1.

6.4.2 Naświetlenie oświetlenia korytarzy, przejść i pokładu powinno być wystarczające dla bezpieczeństwa przy opuszczaniu statku. W najsłabszej oświetlonym miejscu naświetlenie powinno wynosić co najmniej 0,2 lx.

6.4.3 Każda oprawa oświetlenia awaryjnego powinna być oznaczona kolorem czerwonym. Dotyczy to również oprawek w dwu żarówkowych oprawach, w których jedna żarówka zasilana jest z sieci awaryjnej, a druga z sieci normalnej.

6.4.4 Oprawy oświetlenia podstawowego mogą być wykorzystane jako oprawy oświetlenia awaryjnego, jeżeli mogą być również zasilane przez awaryjne źródło energii elektrycznej.

6.4.5 W obwodach oświetlenia awaryjnego nie należy w zasadzie instalować łączników, z wyjątkiem łączników umieszczonych w rozdzielnicy awaryjnej znajdującej się w sterówce. W obwodzie oświetlenia awaryjnego sterowni powinien być łącznik, umieszczony w pobliżu drzwi wejściowych do sterówki.

6.5 Światła nawigacyjne

6.5.1 Z rozdzielnicy światła nawigacyjnych powinny być zasilane oddzielnymi obwodami latarnie masztowe, burtowe, rufowe i holownicze.

6.5.2 Rozdzielnica światła nawigacyjnych powinna być zasilana przez dwa obwody:
 .1 jeden – z rozdzielnicy głównej przez rozdzielnicę awaryjną;
 .2 drugi – z najbliższej rozdzielnicy grupowej.

Rozdzielnice światła nawigacyjnych zainstalowane w pulpicie sterowniczo-kontrolnym ruchu statku można zasiąć bezpośrednio z tego pulpitu – pod warunkiem, że jest on zasilany zgodnie z 4.4.2.

Na statkach, gdzie podstawowym źródłem energii elektrycznej jest bateria akumulatorów, a rozdzielnica główna znajduje się w sterowcu, światła nawigacyjne mogą być zasilane bezpośrednio z tej rozdzielnicy.

6.5.3 Światła masztowe i rufowe pontonów oraz obiektów i urządzeń pływających bez własnego napędu nie służące bezpośrednio żegludze, mogą być zasilane oddzielnymi obwodami z sieci oświetleniowej statku, bez konieczności instalowania specjalnych rozdzielnic dla tych latarni.

6.5.4 Światła nawigacyjne należy przyłączać do sieci za pomocą giętkich przewodów i gniazd wtyczkowych.

6.5.5 Każdy obwód oświetlenia światła nawigacyjnych powinien być dwuprzewodowy izolowany i powinien mieć łącznik dwubiegunowy umieszczony w rozdzielnicy światła nawigacyjnych.

6.5.6 Każdy obwód oświetlenia światła nawigacyjnego powinien mieć odpowiednie zabezpieczenia oraz optyczną sygnalizację działania każdego latarni.

Wskazańka optyczna powinien być tak wykonany i zainstalowany, aby jego uszkodzenie nie powodowało wyłączenia światła nawigacyjnego.

Układ i kolor lamp oświetleniowych światła nawigacyjnych oraz sygnałów świetlnych musi odpowiadać rzeczywistemu położeniu i barwie włączonej światła nawigacyjnych i sygnałów świetlnych.

Jeżeli światła nawigacyjne umieszczone są w zasięgu widzialności sternika, to można nie instalować sygnalizacji ich działania.

6.5.7 Spadek napięcia na rozdzielnicy zasilającej światła nawigacyjne, wliczając w to również układ sygnalizacji działania światła, nie powinien przekraczać 5% przy napięciu znamionowym do 30 V oraz 3% – przy napięciu powyżej 30 V.
6.5.8 Jeżeli sygnalizacja wymagana w 6.5.6 nie jest widoczna z miejsca kierowania statkiem, to należy przewidzieć sygnalizację optyczną i akustyczną, działającą w przypadku zgaśnięcia dowolnego światła nawigacyjnego przy załączonym łączniku światła.

Sygnalizacja powinna być zasilana:
- z obwodu lub źródła energii innego niż zasilające rozdzielnicę latarni sygnałowo-pozycyjnych, lub
- z baterii akumulatorów.

6.5.9 Należy wykluczyć możliwość jednoczesnego załączenia zdwojonych światła nawigacyjnych (montowanych jedno nad drugim).

6.5.10 Dopuszczalne jest jednoczesne zasilanie, sterowanie i kontrola grupy światła przeznaczone dla jednego celu, zainstalowanych w jednym punkcie, przy zapewnieniu identyfikacji awarii każdego pojedynczego światła z tej grupy. Należy wykluczyć możliwość jednoczesnego załączenia podwójnych światła nawigacyjnych zainstalowanych jedno nad drugim lub w tej samej obudowie

7 ŁĄCZNOŚĆ WEWNĘTRZNA I SYGNALIZACJA

7.1 Elektryczne telegrafy maszynowe

7.1.1 Elektryczne telegrafy maszynowe oprócz wymagań zawartych w niniejszym podrozdziale powinny odpowiadać wymaganiom punktu 1.16.1 Części VI – Urządzenia maszynowe i instalacje rurociągów.

7.1.2 Elektryczne telegrafy maszynowe powinny mieć sygnalizację świetlną obecności napięcia w obwodzie zasilania.

7.1.3 Telegrafy maszynowe instalowane w sterowni powinny mieć oświetlenie skal z możliwością regulacji jasności.

7.1.4 Telegrafy maszynowe powinny być zasilane z rozdzielnicą głównej lub z pulpitu sterowniczo-kontrolnego ruchu statku.

7.1.5 Nadajnik telegrafu maszynowego w sterowni należy instalować tak, aby przy przekazywaniu rozkazów dotyczących ruchu statku dźwignia nadajnika przedstawiana była zgodnie z kierunkiem ruchu statku. Pionowe położenie dźwigni powinno odpowiadać rozkazowi „Stop”.

7.1.6 W przypadku zainstalowania telegrafu maszynowego, urządzeń do zdalnego sterowania silników głównych i śrub nastawnych na pochylonej płycie pulpitu sterowniczego, dźwignia w położeniu „Stop” powinna być ustawiona prostopadle do płaszczyzny pulpitu i utrzymywać się dokładnie w tym położeniu.

7.1.7 Każdy telegraf maszynowy powinien mieć sygnalizację akustyczną w sterowni i w maszynowni, która powinna działać przy wydawaniu rozkazu i wyłączać się po otrzymaniu prawidłowej odpowiedzi. Przy nieprawidłowej odpowiedzi sygnalizacja akustyczna nie powinna przestać działać.

7.2 Służbowa łączność wewnętrzna

7.2.1 W przypadku braku możliwości bezpośredniej komunikacji należy przewidzieć urządzenie wewnętrznej łączności rozmówczej zapewniającej niezależną łączność między sterownią a częścią dziobową i rufową statku lub zestawu oraz pomieszczeniami maszynowymi i służbowymi załogi. Do tego celu można zastosować łączność telefoniczną lub rozgłośnię manewrową. Łączność z pomieszczeniami maszynowymi można zastąpić sygnalizacją optyczną i dźwiękową, umożliwiającą komunikację i uruchamianą niezależnie od włącznika/wyłącznika wymaganego w 7.3.10.

Uznaje się, że komunikacja bezpośrednia jest zapewniona, jeżeli:
- możliwy jest bezpośredni kontakt wzrokwowy pomiędzy sterowniką a stanowiskami sterowania wyposażenia cumowniczo-kotwicznego na dziobie i na rufie statku, a ponadto odległość od sterówki do tych stanowisk nie przekracza 35 m; oraz
- istnieje możliwość bezpośredniego przejścia ze sterówki do pomieszczeń dla załogi.
7.2.2 Zaleca się stosowanie w sieciach łączności służbowej telefonów bezbateryjnych.

7.2.3 Dopuszcza się łączność radiotelefoniczną z częścią dziobową i rufową statku lub zestawu.

7.3 Sygnalizacja alarmu ogólnego

7.3.1 Statki, na których podanie sygnału alarmowego głosem lub innym środkiem nie będzie równocześnie słyszane we wszystkich miejscach, w których mogą znajdować się ludzie, należy wyposażyć w elektryczną sygnalizację alarmu ogólnego, zapewniającą dobrą słyszalność we wszystkich takich miejscach na statku.

7.3.2 Urządzenia sygnalizujące należy umieścić w następujących miejscach:
 .1 w pomieszczeniach maszynowych;
 .2 w korytarzach pomieszczeń mieszkalnych, służbowych i ogólnego użytku;
 .3 na otwartych pokładach.

7.3.3 Sygnalizacja alarmu ogólnego powinna być zasilana z sieci statku oraz z szyn rozdzielnicznych awaryjnych zgodnie z wymaganiami 9.3.1 lub 16.1.4.1.

Sygnalizacja alarmu ogólnego może być zasilana z sieci statku i z własnej baterii akumulatorów, pod warunkiem, że zapewnione jest samoczynne przełączanie obwodu zasilania na baterię akumulatorów. W takim przypadku nie wymaga się zasilania z awaryjnego źródła energii elektrycznej.

7.3.4 Sygnalizacja alarmu ogólnego powinna mieć zapewnione ciągłe zasilanie, niezależnie od tego czy bateria akumulatorów jest załączona na ładowanie, czy na rozładowanie.

7.3.5 W obwodach zasilania sygnalizacji alarmu ogólnego należy przewidzieć tylko zabezpieczenie zwarcie. Urządzenia zabezpieczające powinny być zainstalowane na obu przewodach obwodu zasilającego oraz w obwodach każdego urządzenia sygnalizującego. Jedno wspólne zabezpieczenie dla kilku urządzeń sygnalizujących można stosować wówczas, jeżeli w pomieszczeniu, w którym zainstalowano urządzenie sygnalizujące, zapewniona jest dobra słyszalność innych urządzeń sygnalizujących z niezależnym zabezpieczeniem.

7.3.6 Urządzenia akustyczne sygnalizacji alarmu ogólnego należy tak umieszczać, aby sygnał alarmowy wyraźnie odróżniał się od hałasu otoczenia oraz od dźwięków innych systemów sygnalizacji. Urządzenia akustyczne umieszczone w pomieszczeniach o dużej intensywności hałasu powinny być wyposażone w sygnalizację świetlną.

7.3.7 Poziom głośności sygnału w pomieszczeniach załogi powinien być nie niższy niż 75 dB(A).

7.3.8 Poziom głośności sygnału w pomieszczeniach maszynowych powinien być wyższy o 5 dB(A) od najwyższego poziomu hałasu w tych pomieszczeniach.

7.3.9 Sygnalizacja alarmu ogólnego powinna być uruchamiana ze sterowni oraz dodatkowo z pomieszczenia przeznaczonego do pełnienia wachty podczas postoju statku w porcie.

7.3.10 Sygnalizacja alarmu ogólnego powinna działać w sposób ciągły od chwili włączenia do momentu ręcznego wyłączenia go lub rozpoczęcia nadawania komunikatów z rozgłośni dyspozycyjnej.

Jeżeli sygnał alarmowy nie jest słyszalny ze sterowni lub stanowiska, z którego jest uruchamiany, to przy łączniku należy umieścić lampkę kontrolną, wskazującą zadziałanie sygnalizacji alarmu ogólnego. Łącznik powinien mieć oznaczenie informujące o jego przeznaczeniu.

7.3.11 Urządzenia sygnalizujące, łączniki i rozdzielnice instalacji sygnalizacji alarmu ogólnego powinny mieć dobrze widoczne wyróżniające oznaczenia.

7.4 Sygnalizacja wykrywca pożaru

7.4.1 Instalacja sygnalizacji wykrywczą pożaru powinna spełnić, oprócz wymagań niniejszego podrozdziału, również wymagania zawarte w rozdziale 4 Części V – Ochrona przeciwpożarowa.
7.4.2 Instalowanie czujek w instalacji wykrywaczej pożaru umieszczonych w pomieszczeniach zagrożonych wybuchem lub znajdujących się w strudze powietrza zasyzanego z tych pomieszczeń powinno odpowiadać wymogom zawartym w 2.8.

7.4.3 W pomieszczeniach maszynowych powinien być zainstalowany uznan system wykrywaczy pożaru, samokontrolujący się i możliwy do okresowego sprawdzenia.

7.4.4 Instalacja sygnalizacji wykrywaczej pożaru powinna być zasilana oddzielnym obwodem z dwóch niezależnych źródeł energii elektrycznej. Obwody zasilania powinny być prowadzone do automatycznego przełącznika, umieszczonego wewnątrz lub w pobliżu centrali wykrywaczej pożaru. Jeżeli podstawowym źródłem zasilania jest sieć elektryczna, to drugim (rezerwowym) źródłem zasilania powinno być awaryjne źródło energii elektrycznej lub bateria akumulatorów, odpowiadająca pod względem pojemności i usytuowania wymaganiami podanym w 16.1.4. Dla statków wycieczkowych o długości mniejszej lub równej 25 m oraz statków motorowych wystarczającym jest oddzielne źródło zasilania awaryjnego.

7.4.5 Uszkodzenie podstawowego zasilania systemu wykrywaczej pożaru powinno powodować samooczynne przełączenie na awaryjne źródło zasilania z jednoczesnym załączeniem sygnałizacji akustycznej przełączenia zasilania.

7.4.6 System wykrywaczy pożaru powinien być zdolny do szybkiego wykrywania pożaru w dowolnej części maszynowni, w normalnych warunkach działania urządzeń maszynowych i funkcjonującej wentylacji dostosowanej do zmian temperatury otoczenia.

7.4.7 Instalowanie czujników temperaturowych może być dopuszczone wyłącznie w pomieszczeniach o ograniczonej wysokości lub tam, gdzie ich zastosowanie jest uzasadnione.

7.4.8 System wykrywaczy pożaru powinien podawać sygnały dźwiękowe i świetlne wyraźnie odróżniające się od sygnałów podawanych przez inne systemy alarmowe.

7.4.9 Sygnały systemu wykrywacza powinny być słyszalne lub widoczne w sterówce, w pomieszczeniach załogi pełniących wachtę i w pomieszczeniu chronionym.

7.4.10 Na statku nie będącym w podróży i nie mającym wachty w sterówce, sygnał alarmowy powinien być podawany do pomieszczenia osoby odpowiedzialnej.

7.4.11 Sygnalizacja ostrzegawcza o uruchomieniu instalacji gaśniczej powinna być zasilana z baterii akumulatorów.

Jeżeli przewidziana jest sygnalizacja wykrywacza pożaru, to sygnalizacja ostrzegawcza powinna być zasilana z baterii akumulatorów sygnalizacji wykrywaczej.

7.4.12 W sterówce lub w innym miejscu, w którym stałe przebywa załoga, należy przewidzieć system sygnalizacji umożliwiający identyfikację sekcji, w której uruchomiony został tryskacz automatycznej instalacji tryskaczowej.

7.4.13 Automatyczna instalacja tryskaczowa powinna być zasilana z dwóch niezależnych źródeł energii, które powinny być zainstalowane w różnych pomieszczeniach. Każde z tych źródeł energii powinno niezależnie umożliwiać zasilanie całej instalacji.

7.5 Alarm zębowy

7.5.1 We wszystkich pomieszczeniach maszynowych należy przewidzieć sygnalizacje wysokiego poziomu cieczy w studzienkach zębowych. Jako pomieszczenie maszynowe przyjmuje się również dzienne pomieszczenie steru strumieniowego, jeżeli jego praca wymagana jest dla zapewnienia zdolności manewrowych statku.
7.6 Sygnalizacja ruchomej sterówki

7.6.1 Instalacje sterówek opuszczanych i podnoszonych oprócz wymagań zawartych w niniejszym podrozdziale powinny spełniać także wymagania rozdziału 9 Części VI – Urządzenia maszynowe i instalacje rurociągów.

7.6.2 Należy przewidzieć sygnalizację dźwiękową załączającą się automatycznie podczas operacji podnoszenia i opuszczenia ruchomej sterówki.

7.6.3 Należy przewidzieć możliwość sterowania mechanizmem podnoszącym z wnętrza sterówki. Na stanowisku sterowania należy przewidzieć sygnalizację świetlną:
- obecności napięcia zasilającego,
- położenia sterówki w najniższym położeniu,
- położenia sterówki w najwyższym położeniu,
- zablokowania sterówki w stałej pozycji.

8 ZABEZPIECZENIA

8.1 Wymagania ogólne

8.1.1 Obwody odchodzące z rozdziałnic powinny być zabezpieczone przed skutkami zwarć i przeciążeń za pomocą urządzeń umieszczonych na początku każdego obwodu.

Obwód zasilania rozdziałnic może nie być zabezpieczony przed skutkami przeciążeń, jeżeli wszystkie odbiorniki zasilane z tej rozdziałnic mają indywidualne zabezpieczenia przeciążenia, a kabel obwodu zasilania rozdziałnic dobry jest na maksymalny prąd roboczy.

8.1.2 Zabezpieczenia należy dobierać do charakterystyk zabezpieczanych urządzeń w taki sposób, aby ich działanie następowało przy wszystkich niedopuszczalnych przeciżeniach.

8.1.3 System zabezpieczeń powinien tworzyć selektywny układ w całym zakresie prądów przeciążeńowych i spodziewanych prądów zwarcioowych.

Zabezpieczenia powinny być tak ustawione, aby uszkodzenia mało ważnych odbiorników lub ich obwodów zasilania nie miały ujemnego wpływu na niezawodną pracę elektronicznej okrętowej i ciągłość zasilania ważnych urządzeń. Zabezpieczenia zwarcioowe i przeciążeniowe nie powinny zadziałać pod wpływem prądów rozruchowych zabezpieczanych przez nie urządzeń.

8.1.4 Zabezpieczenia przeciążeńowe powinny być zastosowane:
.1 w co najmniej jednej fazie lub biegunie dodatnim – w układzie dwuprzewodowym;
.2 w co najmniej dwóch fazach – w układzie izolowanym trójprzewodowym trójfazowym prądu przemiennego;
.3 we wszystkich fazach – w czteroprzewodowym układzie trójfazowym prądu przemiennego.

8.1.5 Zabezpieczenia zwarcioowe należy stosować w każdym izolowanym biegunie prądu stałego oraz w każdej fazie układu prądu przemiennego.

Zabezpieczenia zwarcioowe należy nastawiać na zadziałanie przy prądzie nie mniejszym niż 200% obciążenia znamionowego. Zadziałanie może być natychmiastowe lub ze zwłoką czasową, niezbędną dla zapewnienia odpowiedniej selektywności.

Do zabezpieczenia kabli zasilających i odbiorników przed skutkami zwarć mogą być stosowane te same elementy zabezpieczające.

8.1.6 Jeżeli w jakiejkolwiek części obwodu zasilającego, przekrój przewodu ulega zmniejszeniu, to należy zainstalować dodatkowe zabezpieczenie, gdy poprzednie zabezpieczenie nie chroni przewodu o zmniejszonym przekroju.
8.2 Zabezpieczenia prądnice

8.2.1 Prądnice nie przeznaczone do pracy równoległej powinny być zabezpieczone przed skutkami przeciążeń i zwarć, przy czym prądnice o mocy do 50 kW (kVA) mogą być zabezpieczone tylko bezpiecznikami.

8.2.2 Prądnice przeznaczone do pracy równoległej powinny mieć co najmniej następujące zabezpieczenia:

1. przeciżenia;
2. zwarcia;
3. kierunkowe (prądu lub mocy zwrotnej);
4. podnapięciowe.

Układ zabezpieczenia prądnicy przed skutkami przeciążeń powinien powodować wystąpienie sygnalizacji optycznej i akustycznej przeciążenia, działając ze zwłoką czasową do 15 minut przy obciążeniach wynoszących od 100 do 110% prądu znamionowego i wyłączenie prądnicy ze zwłoką czasową odpowiadającą ciepłej stałej czasowej zabezpieczanej prądnicy przy obciążeniach wynoszących od 110 do 150% prądu znamionowego prądnicy.

Zaleca się, aby przy ustawieniu zabezpieczenia na wartość 150% prądu znamionowego prądnicy zwłoka czasowa była nie większa niż 2 minuty w przypadku prądnicy prądu przemiennego i nie większa niż 15 sekund w przypadku prądnicy prądu stałego.

W przypadku obciążenia przekraczającego 150% prądu znamionowego prądnicy odbiornik powinien odłączyć tak obciążoną prądnicę powinno nastąpić bezwzględnie.

Wartość nastawienia zabezpieczenia na przeciążenie wyłączające oraz zwłoka czasowa powinien być tak dobrane do charakterystyki przeciążenia silnika napędowego prądnicy, aby w czasie nastawionej zwłoki silnik był w stanie wytworzyć moc wystarczającą do zadziałania zabezpieczeń. Do zabezpieczenia prądnicy przed przeciążeniami nie należy stosować układów zabezpieczających, uniemożliwiających natychmiastowe ponowne załączanie prądnicy.

8.2.3 Zaleca się zainstalować urządzenia odłączające samoczynnie i wybiórczo mniej ważne odbiorniki w przypadku wystąpienia przeciążenia prądnicy.

8.2.4 Zabezpieczenia kierunkowe prądnice przeznaczonych do pracy równoległej powinny być dostosowane do charakterystyk silników napędowych. Nastawienia zabezpieczeń kierunkowych powinny być takie, aby działały przy mocy lub prądzie zwrotnym wynoszącym 5% do 15% wartości znamionowych prądnicy. Zabezpieczenia kierunkowe prądnice prądu stałego należy umieszczać w biegunie przeciwnym do tego, w którym znajduje się przewód wyrównawczy.

8.2.5 Zabezpieczenia podnapięciowe powinny umożliwiać pewne załączanie prądnic na szyny przy napięciu równym lub większym niż 85% napięcia znamionowego i uniemogośliwiać załączenia prądnic przy napięciu niższym niż 35% napięcia znamionowego oraz odłączać prądnicę przy obniżeniu napięcia na ich zaciskach w zakresie od 70% do 35% napięcia znamionowego.

Zabezpieczenia podnapięciowe powinny działać ze zwłoką czasową na odłączenie prądnic od szyn przy obniżeniu napięcia oraz powinny działać bezwzględnie przy próbie załączenia na szyny prądnicy, której napięcie nie osiągnęło podanej wyżej wartości.

8.2.6 Obwody elementów zabezpieczających, pomiarowych, układu synchronizacji oraz regulacji obrotów, zasilane bezpośrednio z prądnicy powinny być niezależnie zabezpieczone przed skutkami zwarć.

8.2.7 Zabezpieczenia zwarcie prądnice należy nastawiać na zadziałanie przy prądzie nie mniejszym niż 300% obciążenia znamionowego, przy czym prądnicę wraz z jej układem wzbudzenia powinna wytrzymać bez zniszczenia jednosekundowe zwarcie.

8.2.8 Prądnice przeznaczone do pracy buforowej z baterią akumulatorów powinny być wyposażone w wyłącznik samoczynny z przekaźnikiem zwrotno-prądowym lub w diodę zaporową uniemożliwiającą przepływ prądu z baterii do prądnicy.
8.3 Zabezpieczenia silników

8.3.1 W obwodach odchodzących z rozdzielnic, a zasilających silniki o mocy większej niż 0,5 kW należy zainstalować zabezpieczenie zwarcie i przeciżenia oraz zabezpieczenia zanikowo-napięciowe, jeżeli nie wymaga się, aby silnik samoczynnie uruchamiał się powtórnie.

Zabezpieczenia przeciążeniowe i zanikowo-napięciowe mogą być zainstalowane w urządzeniach rozruchowych tych silników.

8.3.2 Zabezpieczenia przeciążeniowe silników przeznaczonych do pracy ciągłej powinny powodować wyłączenie zabezpieconego silnika przy obciążeniu prądem ciągłym o wartości pomiędzy 105% a 125% prądu znamionowego.

8.3.3 W obwodach zasilających napędy elektryczne pomp pożarniczych nie należy stosować urządzeń zabezpieczających przed skutkami przeciążeń działających na zasadzie przekaźników termicznych. Urządzenia zabezpieczające przed skutkami przeciążeń mogą być zastąpione sygnalizacją świetlną i akustyczną.

8.4 Zabezpieczenia urządzeń sterowych

8.4.1 Silniki i układy sterowania elektrycznych i elektrohydraulicznych urządzeń sterowych powinny być zabezpieczone tylko przed skutkami zwarcie.

Należy przewidzieć świetlną i akustyczną sygnalizację przeciążenia silnika oraz zaniku napięcia do wolnej z fazy. Odlaczenie silnika pod wpływem zadziałania zabezpieczenia termicznego może być dopuszczone jedynie przy nastawie nie mniejszej niż 200% prądu znamionowego silnika.

8.4.2 Zabezpieczenia zwarcie wyłączników silników prądu stałego elektrycznych i elektrohydraulicznych urządzeń sterowych należy nastawiać na wyłączenie natychmiastowe przy prądzie nie mniejszym niż 300% i nie większym niż 400% znamionowego prądu zabezpieczanego silnika, a w przypadku silników prądu przemiennego należy nastawiać na wyłączenie natychmiastowe przy prądzie większym o około 25% od największego prądu rozruchowego zabezpieczanego silnika.

W przypadku zastosowania bezpieczników topikowych do zabezpieczenia silników urządzeń sterowych, prąd znamionowy wkładki topikowej powinien być dobrany o dwa stopnie wyższy, niż wynika to z doboru według prądu znamionowego tych silników. Dla silników przeznaczonych dla pracy przerywanej prąd znamionowy wkładki topikowej powinien być nie większy niż 160% prądu znamionowego tych silników.

8.4.3 Silniki elektryczne środków aktywnego sterowania statkiem (np. sterów strumieniowych, pędni- ków, stabilizatorów, itp.) powinny być zabezpieczone przed skutkami zwarcie i przeciążeń. Zabezpieczenia przeciążeniowe powinny sygnalizować przeciążenie optycznie i akustycznie oraz powodować wyłączenie silnika elektrycznego w zakresie wymaganym w 8.3.2.

Zabezpieczenia zwarcie powinny spełniać wymagania 8.4.2.

8.5 Zabezpieczenia transformatorów

8.5.1 Obwody zasilające uzwojenia pierwotne transformatorów powinny być zabezpieczone przed skutkami zwarcie i przeciążeń.

Transformatory o mocy do 6,3 kVA mogą być zabezpieczone tylko bezpiecznikami topikowymi.

Zabezpieczenia przeciążeniowe transformatorów mogą być, po uzgodnieniu z PRS, zastąpione sygnalizacją świetlną i akustyczną.

Dla przekładników napięciowych i transformatorów zasilających obwody sterowania można nie stosować sygnalizacji, ani zabezpieczenia przeciążeniowego.

8.5.2 Transformatory przeznaczone do pracy równoleglej należy wyposażyć w łączniki odłączające ich uwozienie pierwotne i wtórne, przy czym odłączanie może nie być równoczesne.

8.5.3 Przekładniki prądowe powinny być tak przyłączone, aby uniemożliwione było rozwarcie uwo- zenia wtórnego przy przelaczeniu obwodów.
8.6 Zabezpieczenia akumulatorów

8.6.1 Baterie akumulatorów, z wyjątkiem baterii przeznaczonych do rozruchu silników spalinowych, powinny być zabezpieczone przed skutkami zwarć.

8.6.2 Każdy układ ładowania akumulatorów powinien mieć odpowiednie zabezpieczenia przed rozładowaniem baterii na skutek obniżenia lub zaniku napięcia na wyjściu z urządzenia ładującego.

8.7 Zabezpieczenia lamp kontrolnych, woltomierzy, kondensatorów i cewek napięciowych

8.7.1 Lampy kontrolne oraz przyrządy pomiarowe i rejestrujące powinny być zabezpieczone przed skutkami zwarć lub powinny mieć elementy ograniczające prąd zwarciowy.

Lampy kontrolne mogą nie mieć indywidualnych zabezpieczeń przed skutkami zwarć lub elementów ograniczających prąd zwarciowy, jeżeli spełnione są poniższe wymagania:

1. lampy zasilane są z obwodów znajdujących się wewnątrz obudowy urządzenia;
2. zabezpieczenie obwodu urządzenia nie przekracza 25 A;
3. uszkodzenie w obwodzie lampy nie może spowodować przerw w pracy ważnego urządzenia.

Zabezpieczenia zwarciowe i elementy ograniczające prąd zwarciowy należy umieszczać możliwie blisko zacisków od strony zasilania.

8.7.2 Kondensatory ochrony radioelektrycznej, przyłączane do obwodów prądniczych, rozdzielnic głównych i awaryjnych oraz ważnych urządzeń elektrycznych, powinny mieć zabezpieczenia przed skutkami zwarć.

8.7.3 Cewki napięciowe aparatów i urządzeń sterowniczych oraz zabezpieczających powinny być zabezpieczone przed skutkami zwarć, lecz mogą nie mieć indywidualnych zabezpieczeń, jeżeli spełnione są poniższe warunki.

1. cewki znajdują się we wspólnej obudowie urządzenia, mają wspólne zabezpieczenia i odnoszą się do układu sterowania jednego urządzenia;
2. cewki zasilane są z obwodu urządzenia, którego zabezpieczenie nie przekracza 25 A.

8.8 Zabezpieczenia urządzeń energoelektronicznych

8.8.1 Energoelektroniczne urządzenia półprzewodnikowe należy zabezpieczyć przed przepięciami wewnętrznymi i zewnętrznymi.

8.8.2 Bloki elementów półprzewodnikowych powinny być zabezpieczone przed skutkami zwarć.

Zabezpieczenia diod i tyrystorów powinny być niezależne od zabezpieczeń obwodów obciążenia.

8.8.3 Jeżeli przewiduje się zasilanie z układu tylko jednego odbiornika, to bloki diod i tyrystorów oraz obwody obciążenia mogą być zabezpieczone wspólnie.

8.9 Zabezpieczenia w obwodach awaryjnych

8.9.1 Awaryjne źródła energii elektrycznej powinny być zabezpieczone tylko przed skutkami zwarć. Jeżeli awaryjnym źródłem jest prądnica z niezależnym napędem, to w centralnym stanowisku sterowania należy przewidzieć świetlną i akustyczną sygnalizację jej przeciążenia.

8.9.2 W obwodach zasilania rozdzielnic awaryjnej oraz w obwodach zasilania odbiorników awaryjnych nie należy stosować urządzeń zabezpieczających uniemożliwiających natychmiastowe ponowne załączenie po zadziałaniu zabezpieczenia.

8.9.3 Nastawa zabezpieczeń dla obwodów awaryjnych powinna zapewniać skuteczną ochronę kabla zasilającego urządzenie awaryjne.
9 AWARYJNE ŹRÓDŁA ENERGII ELEKTRYCZNEJ I ROZDZIAŁ ENERGII ZE ŹRÓDEŁ AWARYJNYCH

9.1 Wymagania ogólne

9.1.1 Na każdym statku o długości większej niż 25 m i na każdym statku z kabinami wyposażonymi w miejsca sypialne należy przewidzieć awaryjne źródło energii elektrycznej.

9.1.2 Awaryjnymi źródłami energii elektrycznej mogą być:
- zespół prądotwórczy, wyposażony we własną instalację paliwową i własny system chłodzenia, uruchamiający się automatycznie i włączający się do sieci po zaniku napięcia na szynach rozdzielnicznych głównej; łączny czas rozruchu i przejęcia obciążenia nie może przekraczać 30 sekund. PRS może zezwolić na ręczne uruchamianie zespołu prądotwórczego, jeśli jest on zainstalowany w pobliżu stanowiska sterowania o stałej obsłudze i znajduje się na zewnątrz pomieszczeń maszynowych;
- bateria akumulatorów przejmująca automatycznie zasilanie w przypadku zaniku napięcia w sieci podstawowej na czas określony w 9.1.3 bez potrzeby jej doładowywania, przy czym spadek napięcia nie może być większy niż dopuszczalny oraz mająca układ ładowania pozwalający na zainstalowanie baterii do sieci awaryjnej również w przypadku, gdy bateria ta jest w stanie ładowania. PRS może zezwolić na ręczne włączanie baterii akumulatorów ze stanowiska o stałej obsłudze, które znajduje się poza pomieszczeniami maszynowymi.

9.1.3 Moc awaryjnego źródła energii elektrycznej powinna być wystarczająca dla zasilania wszystkich urządzeń elektrycznych ważnych z punktu widzenia bezpieczeństwa osób znajdujących się na statku, przy uwzględnieniu odbiorników pracujących jednocześnie, przez czas nie krótszy niż 30 minut.

9.2 Pomieszczenia awaryjnych źródeł energii elektrycznej

9.2.1 Źródła awaryjne i rozdzielnica awaryjna powinny być zainstalowane za grodzią zderzeniową, poza przedziałem maszynowym i pomieszczeniem, w którym znajduje się rozdzielnica główna i powinno być oddzielone od tych pomieszczeń przegrodą pożarową klasy A oraz przegrodą wodoszczelną.

9.2.2 Jeżeli pomieszczenie, w którym znajduje się źródło awaryjne, położone jest na pokładzie otwartym, powinno być na pokładzie otwartym.

9.2.3 Dopuszcza się zainstalowanie źródła awaryjnego i rozdzielnic awaryjnych w przedziale maszynowym pod warunkiem usytuowania ich tak wysoko, jak to jest możliwe – podlega to każdorazowo zgodzie przez PRS.

9.2.4 Rozdzielnica awaryjna powinna być zainstalowana możliwie blisko awaryjnego źródła energii elektrycznej.

9.2.5 Jeżeli awaryjnym źródłem energii elektrycznej jest prądnica z niezależnym napędem, to zaleca się, aby rozdzielnica awaryjna umieszczona była w tym samym pomieszczeniu.

9.2.6 Pomieszczenie awaryjnego zespołu prądotwórczego powinno być ogrzewane w celu zapewnienia odpowiedniej temperatury wymaganej dla jego prawidłowego działania oraz odpowiednio wentylowane, zgodnie z wymaganiami podanymi w Części VI – Urządzenia maszynowe i instalacje rurociągów.

9.2.7 Jeżeli awaryjnym źródłem energii jest bateria akumulatorów, to oddzielne pomieszczenie baterii akumulatorów powinno odpowiadać wymaganom zawartym w 11.2 i 11.3.

9.3 Rozdział energii elektrycznej ze źródeł awaryjnych

9.3.1 Z awaryjnego źródła energii elektrycznej powinny być zasilane następujące odbiorniki, jeżeli nie posiadają one własnego niezależnego awaryjnego źródła energii:
1. światła nawigacyjne;
2. oświetlenie awaryjne;
3. instalacje alarmowe i bezpieczeństwa;
9.3.2 Należy przewidzieć oświetlenie awaryjne:
 1 miejsce składowania, obsługi i wodowania środków ratunkowych;
 2 korytarze, schodów i wyjść z pomieszczeń mieszkalnych i służbowych;
 3 przedziałów maszynowych i wyjść z nich;
 4 rozdzielnicy awaryjnej;
 5 sterówki;
 6 pomieszczenia awaryjnego źródła energii elektrycznej;
 7 miejsce uruchamiania i obsługi instalacji gaśniczych oraz instalacji wykrywania i sygnalizacji pożaru;
 8 miejsce ewakuacji pasażerów i załogi.

9.3.3 Rozdzielnica awaryjna powinna być zasilana z rozdzielnicy głównej. Obwód ten powinien być zabezpieczony przed skutkami zwań i przeciążeń w rozdzielnicy głównej. Gdy przewidziana jest równie możliwość zasilania rozdzielnicy głównej z rozdzielnicy awaryjnej, to taki obwód powinien być zabezpieczony w rozdzielnicy awaryjnej co najmniej przed skutkami zwań.

9.3.4 Jako urządzenia rozruchowe awaryjnych zespołów prądotwórczych mogą być stosowane:
 1 elektryczny układ rozruchowy z własną baterią akumulatorów i układem ładowania;
 2 układ sprężonego powietrza z własnymi niezależnymi zbiornikami powietrza;
 3 hydrauliczny układ rozruchowy;
 4 ręczne urządzenia rozruchowe.

10 MASZYNY ELEKTRYCZNE

10.1 Wymagania ogólne

10.1.1 Na statkach mogą być stosowane maszyny elektryczne odpowiadające wymaganiom obowiązujących norm na wyroby w wykonaniu morskim, a także maszyny elektryczne odpowiadające wymaganiom obowiązujących norm na inne wykonania, lecz pod warunkiem spełnienia dodatkowych wymagań zawartych w niniejszej części Przepisów oraz w Publikacji Nr 42/P – Próby wirujących maszyn elektrycznych, w zakresie każdorazowo ustalonym przez PRS.

10.1.2 Maszyny elektryczne prądu stałego i przemiennego powinny, bez uszkodzeń i trwałych odkształceń wytrzymać zwiększoną prędkość obrotową w ciągu 2 minut.

Prędkość ta wynosi odpowiednio:
 1 dla prądnic, przetwornic maszynowych, sprzęgieł elektrycznych i hamulców – 120% znamionowej prędkości obrotowej, lecz co najmniej o 3% więcej od największej liczby obrotów, które występują w stanie nieustalonym (prześciętym);
 2 dla silników szeregowych – 120% największej dopuszczalnej prędkości obrotowej wymienionej na tabliczce znamionowej, nie mniej jednak niż 150% znamionowej prędkości obrotowej;
 3 dla pozostałych silników (innych niż wymienione w .2) – 120% największej prędkości obrotowej przy biegu jałowym.

10.1.3 Od/doprowadzenie prądu ze/do szczotki powinno odbywać się za pomocą giętej miedzianej linki, a nie poprzez sprężynę szczotkotrzymacza.

10.1.4 W maszynach elektrycznych prądu stałego należy wyraźnie i trwałe oznaczyć prawidłowe ustawienie szczotek. Maszyny prądu stałego powinny być tak wykonane, aby pracowały we wszystkich stanach pracy przy stałym położeniu szczotek.
10.1.5 Maszyny elektryczne komutatorowe powinny pracować praktycznie bez iskrzenia przy dowolnej wartości obciążenia w granicach od biegu jałowego do obciążenia znamionowego. Przy wymaganych przeciżeńiach, nawrotach i rozruchu nie powinno występować iskrzenie w stopniu wywołującym uszkodzenie szczotek lub komutatora.

10.1.6 Prądnice powinny mieć taką konstrukcję, aby po nagrzaniu do temperatury ustalonej, odpowiadającej obciążeniu znamionowemu, mogły wytrzymać przeciążenie prądem o wartości podanej w tabeli 10.1.6.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj prądnicy</th>
<th>Przeciążenie prądem, [%]</th>
<th>Czas trwania przeciążenia, [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prądu przemiennego</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>Prądu stałego</td>
<td>50</td>
<td>15</td>
</tr>
</tbody>
</table>

10.1.7 Zaciski łączące uzwojenia maszyn elektrycznych i kabli zasilających powinny być łatwo dostępne dla obsługi po zainstalowaniu maszyny na statku. Ich obudowa powinna posiadać stopień ochrony taki, jak obudowa maszyny, lecz nie mniejszy niż IP 44. Dla maszyn elektrycznych o napięciu nie wyższym niż 50V PPRS może odstąpić od tego wymagania.

10.2 Prądnice prądu przemiennego

10.2.1 Każda prądnica prądu przemiennego powinna mieć oddzielny niezależny układ do samoczynnej regulacji napięcia.

10.2.2 Prądnice prądu przemiennego powinny mieć układ regulacji napięcia tak dopasowany do charakterystyki regulacyjnych silników napędowych, aby przy zmianach obciążenia od biegu jałowego do obciążenia znamionowego, przy znamionowym współczynniku mocy, utrzymywane było napięcie znamionowe z tolerancją do ±2,5%.

10.2.3 Nagła zmiana symetrycznego obciążenia prądnicy, pracującej ze znamionową liczbą obrotów i przy znamionowym napięciu oraz przy istniejącym obciążeniu i współczynniku mocy, nie powinna powodować obniżenia napięcia do wartości niższej od 85% ani podwyższenia do wartości wyższej od 120% napięcia znamionowego.

Po takiej zmianie napięcie prądnicy powinno być przywrócone do wartości znamionowej z tolerancją ±4%, po upływie czasu nie dłuższego niż 1,5 sekundy, a w przypadku zespołu awaryjnego – nie dłuższe-go niż 5 sekund.

Jeżeli brak dokładnych danych dotyczących wartości załączonego naglego obciążenia prądnicy pracującej z istniejącym obciążeniem, można przyjąć wartość załączonego naglego obciążenia równą 60% prądu znamionowego, przy indukcyjnym współczynniku mocy nie większym od 0,4, załączonego przy biegu jałowym, a następnie odłączonego.

10.3 Prądnice prądu stałego

10.3.1 Prądnice bocznikowe prądu stałego mogą być stosowane tylko w przypadku wyposażenia ich w samoczynne regulatory napięcia.

10.3.2 Regulatory napięcia prądnic szeregowo-bocznikowych powinny zapewniać możliwość obniżenia napięcia biegu jałowego prądnicy nie nagrzanej o co najmniej 10% poniżej napięcia znamionowego, przy uwzględnieniu wzrostu liczby obrotów silnika napędowego przy biegu luzem.

10.3.3 Ręczne regulatory napięcia powinny być tak wykonane, aby przy obrocie pokrętła w kierunku zgodnym z ruchem wskazówek zegara następował wzrost napięcia.

10.3.4 Regulatory wzbudzenia bocznikowego powinny być tak wykonane, aby przed ich odłączeniem następowo zwieranie użwożenia wzbudzającego.
10.3.5 Prądnice szeregowo-bocznikowe powinny mieć niezależne urządzenie do regulacji napięcia, za pomocą którego można regulować napięcie z dokładnością do ±1% przy mocy prądnicy do 100 kW lub z dokładnością do ±0,5% przy mocy powyżej 100 kW, zarówno w stanie zimnym, jak i nagrzanym oraz przy dowolnym obciążeniu w całym zakresie roboczych obciążeń prądnicy.

10.3.6 Zespoły prądotwórcze prądu stałego z prądnicami szeregowo-bocznikowymi powinny mieć takie charakterystyki zewnętrzne prądnicy, aby napięcie nagrzanej prądnicy ustawione na wartość znamionową z tolerancją do ±1%, przy obciążeniu wynoszącym 20%, nie zmieniło się, przy pełnym obciążeniu prądnicy, o więcej niż ±1,5% w przypadku prądnicy o mocy 50 kW lub większej oraz o więcej niż ±2,5% w przypadku prądnicy o mocy mniejszej niż 50 kW.

Zmiana napięcia pomiędzy 20 i 100% znamionowego obciążenia prądnicy szeregowo-bocznikowej nie powinna przekraczać następujących wartości:

-1 ± 4% w przypadku prądnic o mocy od 50 kW wzwyż;
-2 ± 5% w przypadku prądnic o mocy przekraczającej 15 kW, ale mniejszej niż 50 kW;
-3 ± 6% w przypadku prądnic o mocy przekraczającej 15 kW.

10.3.7 Zespoły prądotwórcze z prądnicami bocznikowymi powinny mieć takie charakterystyki zewnętrzne prądnicy, aby przy zmianie obciążenia od biegu jałowego do obciążenia znamionowego utrzymywało się napięcie znamionowe, z tolerancją do ±5%.

10.4 Transformatory

10.4.1 Użwożenia transformatorów dla napięć pierwotnych i wtórnych powinny być elektrycznie rozdzielone.

10.4.2 Na statkach w zasadzie należy stosować transformatory suche chłodzone powietrzem. Stosowanie transformatorów innej konstrukcji (np. chłodzonych cieczą) będzie odrębnie rozpatrywane przez PRS.

10.4.3 Transformatory powinny wytrzymać przeciążenie równe 10% mocy znamionowej w czasie 1 godziny oraz przeciążenie równe 50% mocy znamionowej w czasie 5 minut.

10.4.4 Zmienność napięcia pomiędzy biegiem jałowym i obciążeniem znamionowym przy obciążeniu czynnym nie powinna przekraczać 5% dla transformatorów o mocy do 6,3 kVA oraz 2,5% dla transformatorów o mocy większej niż 6,3 kVA.

10.5 Hamulce elektromagnetyczne

10.5.1 Zadziałanie hamulca (hamowanie) powinno następować przy zaniku napięcia na cewce napędowej.

10.5.2 Obniżenie napięcia o 30% w stosunku do napięcia znamionowego, gdy użwojenie hamulca jest nagrane, nie powinno spowodować zahamowania.

10.5.3 Hamulce elektromagnetyczne powinny mieć możliwość zwalniania ręcznego.

10.5.4 Hamulce elektromagnetyczne powinny mieć co najmniej dwie sprężyny dociskowe.

11 URZĄDZENIA ENERGOELEKTRONICZNE

11.1 Dla każdego układu energeto-elektronicznego należy zapewnić oddzielne urządzenie odłączające od sieci zasilającej. Przełącznik izolacyjny z bezpieczeństwem może być stosowany w urządzeniach odbiorczych do prądu znamionowego 315 A. W większości innych przypadkach po stronie sieci należy zainstalować wyłącznik nadmiarowo-prądowy.

11.2 Elektronika sterująca i sygnalizacyjna powinna być galwanicznie oddzielona od obwodów zasilających.
11.3 Systemy konwerterów powinny zapewniać bezpieczną pracę nawet przy największych dopuszczalnych wahaniach napięcia i częstotliwości. W przypadku niedopuszczalnie wysokich częstotliwości i/lub wahań napięcia zasilającego system musi sam się wyłączyć lub pozostać w bezpiecznym stanie pracy.

11.4 Ładunki elektryczne w zespołach należy zmniejszyć do napięcia poniżej 50V w czasie krótszym niż 5 sekund po odłączeniu od sieci. Jeżeli wymagany jest dłuższy czas rozładowania, na urządzeniu należy umieścić znak ostrzegawczy.

11.5 Awaria zewnętrznych sygnałów sterujących nie może prowadzić do powstania sytuacji niebezpiecznych.

11.6 Energoelektronika musi być zaprojektowana i zainstalowana w taki sposób, aby awaria napięcia sterującego nie prowadziła do powstawania sytuacji niebezpiecznych.

11.7 W instalacjach wymaganych ze względu na napęd i zdolności manewrowe, bezpieczeństwo załogi, jednostki lub ładunku, należy przewidzieć odpowiednie elementy do monitorowania poszczególnych zespołów i podsystemów energetyki elektronicznej w celu ułatwienia wykrywania błędów w przypadku nieprawidłowego działania systemu.

12 AKUMULATOR

12.1 Wymagania ogólne

12.1.1 Właściwości akumulatorów powinny być co najmniej takie, aby po 28-dobowym postoju bez obciążenia, w temperaturze (25 ± 5) °C, samowyładowanie akumulatorów nie było większe niż 30% pojemności znamionowej dla akumulatorów kwasowych i 25% dla akumulatorów zasadowych.

12.1.2 Obudowy akumulatorów i zamknięcia otworów należy tak wykonywać, aby przy przechyłe akumulatora w dowolnym kierunku od pionu o kąt do 40° elektrolit nie wylewał się i nie rozpylała. Korki należy wykonywać z materiału trwałego i odpornego na dzielenie elektrolitu. Korek powinien być tak skonstruowany, aby nie dopuszczał do wytworzenia się w akumulatorze nadmiernego ciśnienia gazu.

12.1.3 Należy stosować takie elektrolity, które nie zmieniają swoich właściwości i nie ulegają uszkodzeniom przy zmianach temperatury otoczenia w granicach od –30°C do +60°C.

12.1.4 Materiały stosowane do wykonania skrzyń baterii akumulatorów powinny być odporne na szkodliwe działanie elektrolitu. Poszczególne akumulatory umieszczone w skrzyniach należy tak zamocować, aby ich wzajemne przemieszczanie się było niemożliwe.

12.1.5 Możliwość zastosowania akumulatorów bezobsługowych podlega każdorazowo odrębnemu rozpatrzeniu przez PRS.

12.1.6 Przy zastosowaniu akumulatorów litowo-jonowych stosuje się wymagania normy europejskiej EN 62619 i EN 62620. Należy stosować układy kontrolujące parametry pracy akumulatorów litowo-jonowych.

12.1.7 W/w układy kontrolujące powinny posiadać co najmniej następującą funkcję:
 .1 ochrona ogniw (zwarcie obwodu, przeciążenie, głębokie rozładowanie itp.);
 .2 sterowanie ładowaniem;
 .3 zarządzanie obciążeniem;
 .4 określenie poziomu naładowania;
 .5 zrównoważenie pojemności i napięcia poszczególnych ogniw;
 .6 zarządzanie cieplne.

12.2 Pomieszczenia akumulatorów
12.2.1 Baterie akumulatorów powinny być instalowane w miejscach suchych, nie narażonych na działanie zbyt wysokich lub zbyt niskich temperatur, rozpryskiwanej wody, pary i innych szkodliwych czynników oraz w taki sposób, aby zapewniony był dostęp do bieżącej i okresowej obsługi.

12.2.2 Baterie akumulatorów o napięciu powyżej bezpiecznego oraz baterie o mocy powyżej 2 kW (obliczonej z największego prądu ładowania i napięcia znamionowego) należy umieszczać w specjalnych pomieszczeniach (zwanych dalej akumulatorami), dostępnych z pokładu otwartego lub w odpowiednich skrzyniach, ustawionych na pokładzie otwartym. Pomieszczenia te powinny być zamkniętymi pomieszczeniami ruchu elektrycznego. Baterie o mocy od 0,2 kW do 2 kW mogą być umieszczone w skrzyniach lub szafach umieszczonych wewnątrz kadruba statku.

Na statkach z instalacją elektryczną małej mocy (oprócz pasażerskich) wyżej wymienione baterie mogą być zainstalowane w maszynowni, tak wysoko jak to możliwe ze względu na obsługę baterii.

Baterie akumulatorów przeznaczone do elektrycznego rozruchu silników spalinowych, oprócz silników agregatów awaryjnych, mogą być umieszczone w maszynowni w specjalnych skrzyniach lub szafach z dostateczną wentylacją.

Baterie akumulatorów o mocy mniejszej niż 0,2 kW można ustawiać w dowolnym pomieszczeniu z wyjątkiem mieszkalnego, pod warunkiem że akumulatory będą chronione przed działaniem wody i uszkodzeniami mechanicznymi oraz nie będą wpływać szkodliwie na otaczające urządzenia.

Instalowanie akumulatorów nie gazujących podczas normalnej eksploatacji, np. żelowych (wydobywanie się gazu możliwe jest wyłącznie po przekroczeniu dopuszczalnego ciśnienia wewnątrz obudowy) będzie oddzielnie rozpatrzone przez PRS.

12.2.3 Akumulatorów zasadowych i kwasowych nie należy umieszczać w tym samym pomieszczeniu lub w tej samej skrzyni.

Naczynia i przyrządy przeznaczone dla baterii akumulatorów z różnymi elektrolitami powinny być przechowywane oddzielnie.

12.2.4 Wnętrze pomieszczeń lub skrzyń akumulatorów oraz wszystkie części konstrukcyjne podlegające szkodliwemu działaniu elektrolitu lub gazu powinny być odpowiednio zabezpieczone.

12.2.5 Baterie akumulatorowe oraz poszczególne ogniwa powinny być dobrze zamocowane. Przy ustawieniu ich na stojakach, odległość od pokładu do korków górnego piętra ogniw nie powinna przekraczać 1500 mm.

12.2.6 Przy ustawieniu baterii akumulatorów lub poszczególnych ogniw należy zastosować podkładki i przekładki dystansowe, zapewniające ze wszystkich stron szczeliny dla swobodnej cyrkulacji powietrza, o szerokości co najmniej 15 mm.

12.2.7 Na drzwiach wejściowych akumulatorni lub obok nich oraz na skrzyniach z akumulatorami należy umieścić napisy ostrzegające o niebezpieczeństwie wybucia; wysokość liter powinna wynosić co najmniej 10 cm.

12.3 Ogrzewanie i wentylacja

12.3.1 Akumulatornie, w których podczas eksploatacji temperatura może obniżyć się poniżej +5°C, powinny być ogrzewane. Nie wymaga się ogrzewania skrzyń i szaf akumulatorowych, ustawionych na pokładzie. Ogrzewanie akumulatorni może być dokonywane poprzez wykorzystanie ciepła przyległych pomieszczeń lub grzejnikami wodnymi albo parowymi umieszczonymi w akumulatorni.

12.3.2 Zawory instalacji grzewczej powinny być umieszczone na zewnątrz akumulatorni.

12.3.3 Akumulatornie, jak również szafy i skrzynie akumulatorowe, powinny mieć odpowiednią wentylację, zapobiegającą tworzeniu się i gromadzeniu miaszek wybuchowych.

Instalacja wentylacyjna powinna odpowiadać wymaganiom podanym w Części VI – Urządzenia maszynowe i instalacje rurociągów.
12.3.4 Akumulatornie z wentylacją sztuczną powinny mieć urządzenia uniemożliwiające włączenie ładowania baterii akumulatorów przed uruchomieniem wentylacji. Urządzenie do ładowania akumulatorów powinno być tak rozwiązane, aby wyłączało się samoczynnie w przypadku zatrzymania się wentylatorów.

12.4 Ładowanie baterii akumulatorów

12.4.1 Należy przewidzieć urządzenie do ładowania baterii akumulatorów zasilających ważne urządzenia. Urządzenie to powinno umożliwiać naładowanie baterii w czasie nie dłuższym niż 8 godzin. W przypadku zastosowania dodatkowej baterii, zastępującej poddaną ładowaniu, czas ten może być odpowiednio wydłużony.

12.4.2 Jeżeli przewidziana jest równoległa praca prądnicy i baterii akumulatorów (praca buforowa), schemat i konstrukcja urządzenia ładowującego podlegają odrębnemu rozpatrzeniu przez PRS.

12.4.3 Układ ładowania powinien zapewniać pomiar napięcia na zaciskach baterii oraz pomiar prądu ładowania, a dla awaryjnych źródeł energii – również pomiar prądu rozładowania.

12.4.4 Na statkach, które są wyposażone w przenośne lampy akumulatorowe lub które mają akumulatorowe zapasowe światła nawigacyjne, należy przewidzieć urządzenia do ładowania akumulatorów tych lamp.

12.4.5 Należy stosować wyłącznie urządzenia do automatycznego ładowania, które odpowiadają charakterystyce ładowania danego typu akumulatora.

12.5 Instalowanie urządzeń elektrycznych w akumulatorni

12.5.1 W akumulatorni nie należy instalować żadnych urządzeń elektrycznych z wyjątkiem opraw oświetleniowych (w wykonaniu przeciwwybuchowym – dla mieszanin wybuchowych o grupie wybuchowości co najmniej IIC i klasie temperaturowej co najmniej T1) oraz kabli prowadzonych do akumulatorów i do opraw oświetleniowych. Kable prowadzone do akumulatorów i opraw oświetleniowych mogą być uкладane bez osłon, jeżeli mają metalowy pancerz lub opłot pokryty niemetalową powłoką i pancerz ten lub opłot jest skutecznie uziemiony na obu końcach.

12.6 Rozruch elektryczny silników spalinowych

12.6.1 Liczba baterii rozruchowych

12.6.1.1 Do elektrycznego rozruchu silników spalinowych, niezależnie od liczby tych silników, mogą być stosowane indywidualne baterie akumulatorów dla każdego silnika lub ich grupy, albo jedna wspólna bateria. Jeżeli bateria akumulatorów jest przeznaczona do rozruchu więcej niż jednego silnika, to należy przewidzieć stałą instalację z łącznikami umożliwiającymi wykorzystanie baterii akumulatorów do rozruchu dowolnego silnika spalinowego.

12.6.1.2 Bateria akumulatorów rozruchowych powinna być umieszczona w takim miejscu, aby przewody między baterią i rozrusznikami silników były jak najkrótsze.

12.6.2 Charakterystyki baterii

12.6.2.1 Każda bateria rozruchowa powinna być obliczona na prąd rozładowania występujący w czasie rozruchu, odpowiadający maksymalnemu prądowi rozruchowemu rozrusznika elektrycznego o największej mocy.

12.6.2.2 Pojemność każdej baterii powinna zapewniać, bez doładowania, nie mniej niż 6 rozruchów (w ciągu 30 minut) silnika spalinowego, przygotowanego do rozruchu, a w przypadku dwóch lub większej liczby silników – nie mniej niż 3 rozruchy każdego silnika.

12.6.2.3 Przy obliczaniu pojemności baterii należy założyć, że czas trwania każdego rozruchu wynosi co najmniej 5 sekund.
12.6.2.4 Z baterii akumulatorów rozruchowych może być zasilana instalacja oświetleniowa statku, pod warunkiem, że pojemność baterii będzie zwiększona (w stosunku do pojemności wynikającej z wymagań podanych w 11.6.2.2 i 11.6.2.3) o tyle, aby określone tam liczby rozruchów można było wykonać w każdych warunkach eksploatacyjnych.

12.6.3 Urządzenia do ładowania

12.6.3.1 Zasilanie urządzenia do ładowania baterii rozruchowych może być wykonane jednym obwodem z rozdziałnicy głównej lub jednym obwodem z prądnicy zawieszonej na silniku spalinowym.

13 APARATY ELEKTRYCZNE I SPRZĘT INSTALACYJNY

13.1 Aparaty elektryczne

13.1.1 Wymagania ogólne

13.1.1.1 Na statkach mogą być stosowane aparaty elektryczne odpowiadające wymaganiom obowiązującym norm na wyroby wykonane morskim, a także aparaty odpowiadające wymaganiom obowiązującym norm na inne wykonania, lecz pod warunkiem spełnienia dodatkowych wymagań zawartych w niniejszej części Przepisów w zakresie każdorazowo ustalonym przez PRS.

13.1.1.2 Wszystkie łączniki niemanewrowe, z wyjątkiem łączników instalacyjnych kabinowych, należy wyposażyć w mechaniczne lub elektryczne wskaźniki położenia styków.

13.1.1.3 Nastawniki i sterowniki powinny mieć mechanizmy ustalające poszczególne położenia stopni kontaktowych, przy czym położenie zerowe powinno być lepiej wyczuwalne od innych położeń. Nastawniki i sterowniki należy wyposażyć w skalę oraz we wskaźnik położenia, wskazujący stan załączenia.

13.1.1.4 Aparaty rozruchowo-nastawcze, z wyjątkiem stosowanych do ciągłej regulacji, należy tak wykonać, aby położenia krańcowe i pośrednie na poszczególnych stopniach sterowania były łatwo wyczuwalne, a ruch poza położenia krańcowe – niewygodny.

13.1.2 Aparaty z napędem ręcznym

13.1.2.1 Ręczne elementy manipulacyjne aparatów łączeniowych i rozruchowo-regulacyjnych powinny mieć taki kierunek ruchu, aby przy obrocie pokrętła zgodnie z kierunkiem ruchu wskazówek zegara, albo przy przesunięciu rękojeści (dźwigni) z dołu do góry, albo przy przesunięciu rękojeści (dźwigni) w przód, następowało załączenie aparatu, rozruch silnika elektrycznego, zwiększenie prędkości obrotowej, wzrost napięcia itp.

Przy sterowaniu urządzeniami podnoszącymi lub opuszczającymi, ruch pokrętła zgodny z kierunkiem ruchu wskazówek zegara lub ruch rękojeści (dźwigni) do siebie powinien powodować podnoszenie, a ruch przeciwny – opuszczenie.

13.1.3 Aparaty z napędem mechanicznym

13.1.3.1 Mechanizm napędowy łączników niemanewrowych z napędem mechanicznym powinien być tak wykonany, aby w przypadku zaniku energii uruchamiającej napęd mechaniczny styki łącznika mogły pozostać tylko w położeniu wyłączonym lub załączonym.

13.1.3.2 Łączniki niemanewrowe z napędem maszynowym należy wyposażyć w urządzenia umożliwiające ręczne sterowanie.

13.1.4 Cewki

13.1.4.1 Mocowanie przewodu lub zacisku do uzwojenia cewki powinno być tak wykonane, aby napięcia przyłączonego przewodu nie przenosiły się na wewnętrzne zwoje cewki. Wyprowadzenie z cewek napięciowych należy wykonywać giętkim przewodem wielodrutowym, z wyjątkiem tych przypadków, gdy elementy stykowe mocowane są bezpośrednio do karkasu cewki.
13.1.4.2 Cewki aparatów elektromagnetycznych należy cechować, podając ich wielkości charaktery-
ystyczne.

13.1.5 Bezpieczniki

13.1.5.1 Wkładki topikowe bezpieczników powinny być typu całkowicie zamkniętego. Przetopienie
wkładki topikowej nie powinno powodować wydmuchu luku na zewnątrz, iskrzenia ani innego szkodli-
wego działania na elementy umieszczone w pobliżu.

13.1.5.2 Wkładki topikowe bezpieczników zaleca się tak wykonywać, aby ich przepalenie się było
widoczne.

13.1.5.3 Podstawy bezpiecznikowe i wkładki topikowe powinny być wykonane z niepalnego i niehi-
groskopijnego materiału izolacyjnego.

13.2 Sprzęt instalacyjny i oświetleniowy

13.2.1 Wymagania ogólne

13.2.1.1 Obudowy sprzętu instalacyjnego należy wykonywać z materiału odpornego na korozję lub
odpowiednio zabezpieczonego przed korozją, co najmniej trudno zapalnego i o dostatecznej wytrzymać-
łości mechanicznej.

W przypadku użycia stali lub stopów aluminium należy zastosować odpowiednią ochronę antykoro-
zyjną.

13.2.1.2 Części izolacyjne, do których mocowane są części wiodące prąd, należy wykonywać z mate-
rialów niewydzielających gazów zapalających się od iskry elektrycznej przy temperaturze do 500°C.

13.2.1.3 Obudowy opraw oświetleniowych przeznaczonych do instalowania na materiałach palnych
lub w ich pobliżu należy wykonywać tak, aby nie nagrzewały się do temperatury wyższej niż 90°C (przy
temperaturze otoczenia +40°C).

13.2.2 Oprawy oświetleniowe

13.2.2.1 Konstrukcja opraw oświetleniowych z cokołem gwintowym powinna być taka, aby zapew-
nione było odpowiednie mocowanie żarówek zapobiegające samowykręcaniu się.

13.2.2.2 W oprawach oświetleniowych nie należy umieszczać żadnych łączników.

13.2.2.3 Każda oprawa oświetleniowa powinna mieć trwale oznacone napięcie znamionowe oraz
najwyższy dopuszczalny prąd lub moc żarówki.

13.2.3 Lampy fluorescencyjne i wyładowcze

13.2.3.1 Dławiki, kondensatory i pozostałe wyposażenie lamp wyładowczych powinny być osłonięte
skutecznie uziemionymi metalowymi obudowami.

13.2.3.2 Kondensatory o pojemności 0,5 mikrofarada i większej należy wyposażyć w urządzenia do
ich rozładowania. Urządzenie to należy tak wykonać, aby po upływie 1 minuty po wyłączeniu napięcie
na kondensatorze nie przekraczało 50 V.

13.2.3.3 Dławiki i transformatory o dużej reaktancji należy umieszczać możliwie najbliżej lampy,
z którą współpracują.

13.2.3.4 Lampy wyładowcze zasilane napięciem wyższym niż 250 V należy zaopatrzyć w tabliczki
oszczędności, wskazujące wielkość napięcia.

13.2.3.5 Wszystkie części takich lamp pracujące pod napięciem powinny być osłonięte.

13.2.4 Połączenia wtykowe
13.2.4.1 Tulejki stykowe gniazda wtyczkowych należy tak wykonywać, aby zapewniały stały nacisk na kółek wtyczki.

13.2.4.2 Nie należy stosować kółków wtykowych przecinanych. Kółki wtykowe na prąd większy niż 10 A należy wykonywać jako cylindryczne, przy czym mogą być one pełne lub rurkowe.

13.2.4.3 Gniazda wtyczkowe i wtyczki na napięcie wyższe niż bezpieczne powinny mieć styki do podłączenia żył kabla uziemiającego obudowy przyłączanych odbiorników.

13.2.4.4 Gniazda wtyczkowe instalowane w sieciach o różnych napięciach powinny różnić się konstrukcją, tak aby możliwe było połączenie tylko wtyczki odpowiedniej dla danego gniazda.

13.2.4.5 Gniazda wtyczkowe z obudowami należy tak wykonywać, aby zachowany był stopień ochrony niezależnie od tego, czy wtyczka jest włożona czy wyjęta.

13.2.4.6 Wszystkie gniazda wtyczkowe o prądzie znamionowym większym niż 16 A powinny mieć wbudowane łączniki. Takie gniazda należy wyposażać w blokadę uniemożliwiającą wyjęcie i włożenie wtyczki, gdy łącznik w gnieździe wtyczkowym znajduje się w pozycji „załączony”.

13.2.4.7 W gniazdach wtyczkowych bez blokady odległość między stykami w powietrzu i po powierzchni materiału izolacyjnego powinny być takie, aby przy wyjmowaniu wtyczki obciążonej prądem o 50% większym od znamionowego, przy znamionowym napięciu, nie mogło wystąpić zwarcie na skutek przerzutu łuku.

13.2.4.8 Gniazda wtyczkowe i wtyczki powinny mieć taką konstrukcję, aby nie było możliwe włożenie do gniazda tylko jednego kółka, ani włożenie kółka prądowego do tulei uziemiającej, a konstrukcja gniazda przeznaczonych do podłączenia silników (lub urządzeń), których kierunek obrotów (lub działania) zależy od kolejności faz lub biegunów, powinna ponadto uniemożliwić zmianę kolejności faz lub biegunów.

Przy wkładaniu wtyczki do gniazda powinno najpierw nastąpić zetknięcie się kółka uziemiającego z tuleją uziemiającą, a dopiero potem połączenie części przeznaczonej do przewodzenia prądu.

13.2.4.9 W gniazdach wtyczkowych, wtyczkach oraz w gniazdach rozgałęźnych nie należy instalować bezpieczników.

14 URZĄDZENIA GRZEWCZE

14.1 Wymagania ogólne

14.1.1 Należy stosować tylko urządzenia grzewcze typu stacjonarnego.

14.1.2 Zabronione jest stosowanie urządzeń grzewczych w pomieszczeniu, w którym może zgromadzić się łatwopalny gaz lub opary lub w którym może nastąpić samozapłon pyłu.

14.1.3 Urządzenia grzewcze powinny być zasilane z rozdzielnic głównej lub z przeznaczonej do tego celu rozdzielnic grupowej, lub z rozdzielnicy oświetleniowej, z uwzględnieniem wymagań 6.1.11

14.1.4 Części nośne konstrukcji urządzeń grzewczych oraz wewnętrzne powierzchnie obudowy należy w całości wykonywać z materiałów niepalnych.

14.1.5 Dopuszczalny prąd upływnościowy w stanie nagrzanym stałych urządzeń grzewczych nie powinien być większy niż 1 mA na każdy 1 kW mocy znamionowej każdego oddzielnie załączonego elementu grzewczego, a dla całego urządzenia – nie większy niż 10 mA.

14.1.6 Urządzenie grzewcze i ogrzewacze wnętrzowe należy tak konstruować, aby temperatura części, z którymi personel obsługujący ma kontakt w ramach normalnej obsługi tych urządzeń lub dotknięcie których jest możliwe, nie przekraczaća wartości podanych w tabeli 13.1.6.

Tabela 13.1.6
14.2 Ogrzewacze wnętrzowe

14.2.1 Ogrzewacze wnętrzowe powinny być przeznaczone do instalowania na stałe. Ogrzewacze należy wyposażyć w odpowiedni układ odłączający zasilanie w przypadku przekroczenia dopuszczalnej temperatury obudowy ogrzewacza. Należy przy tym wykluczyć automatyczne ponowne załączenie bez ręcznego odblokowania układu.

14.2.2 Ogrzewacze wnętrzowe powinny być instalowane zgodnie z wymaganiami zawartymi w 7.4.4 z Części V – Ochrona przeciwpożarowa.

14.2.3 Jeżeli ogrzewacze nie mają wbudowanych łączników, to łączniki takie należy zainstalować w pomieszczeniu, w którym zainstalowano dany ogrzewacz. Łączniki powinny odłączać zasilanie na wszystkich biegunach lub fazach.

14.2.4 Konstrukcja osłon ogrzewaczy wnętrzowych powinna być taka, aby kładzenie na nich jakichkolwiek przedmiotów było utrudnione.

14.2.5 Zainstalowane na stałe urządzenia grzewcze na napięcie wyższe od bezpiecznego, powinny mieć osłony uniemożliwiające dostęp, bez użycia specjalnych narzędzi, do części znajdujących się pod napięciem. Na osłonach należy umieścić napisy z podaniem wysokości napięcia.

14.3 Urządzenia kuchenne

14.3.1 Kuchenne urządzenia grzewcze należy tak wykonywać, aby nie można było dotknąć naczyń części pod napięciem i aby wylewanie się gotowanego pokarmu nie powodowało zarażen ani uszkodzeń izolacji.

14.4 Podgrzewanie oleju i paliwa

14.4.1 Podgrzewacze elektryczne mogą być stosowane do podgrzewania oleju i paliwa o temperaturze zapłonu par ponad 60°C – pod warunkiem spełnienia wymagań 13.4.2 i 13.4.3.

14.4.2 Urządzenia podgrzewające rurociągi oleju i paliwa należy wyposażyć w środki regulujące temperaturę, w świetlną sygnalizację warunków pracy urządzenia oraz w świetlną i akustyczną sygnalizację niesprawności układu lub przekroczenia dopuszczalnej temperatury.

14.4.3 Urządzenia podgrzewające olej i paliwo w zbiornikach należy wyposażyć w środki regulujące temperaturę nagrzanego czynnika, w czujniki temperatury powierzchni elementów grzejnych, w czujniki minimalnego poziomu i w środki odłączające zasilanie podgrzewaczy przy przekroczeniu dopuszczalnego górnego zakresu temperatury i przy obniżeniu poziomu czynnika poniżej minimalnego.

Ponadto urządzenia te należy wyposażyć w świetlną sygnalizację warunków pracy oraz w świetlną i akustyczną sygnalizację niesprawności układu.

14.4.4 Podgrzewacze paliwa i oleju powinny być wyposażone w regulator temperatury podgrzewanego czynnika. Ponadto należy przewidzieć wyłącznik bezpieczeństwa, odłączający napięcie zasilające w przypadku osiągnięcia przez element grzejny temperatury równej 220°C i umożliwiający ręczne załączenie zasilania z chwilą obniżenia się temperatury.
15 KABLE I PRZEWODY

15.1 Wymagania ogólne

15.1.1 Należy stosować kable i przewody typu okrętowego z materiałów samogaszących i nierozprzestrzeniających płomienia, odpornych na działanie wody i oleju – odpowiadające wymaganiom niniejszego rozdziału lub uzgodnionym z PRS normom krajowym i międzynarodowym (m. in. IEC 60092, IEC 60332).

Możliwość zastosowania kabli i przewodów innego typu podlega odrębemu rozpatrzeniu przez PRS.

15.1.2 Wymagania niniejszego rozdziału nie dotyczą kabli koncentrycznych, telefonicznych, a także kabli elektroenergetycznych na napięcia powyżej 1000 V.

15.2 Żyły

15.2.1 Żyły kabli przeznaczonych do zasilania ważnych urządzeń powinny być wielodrutowe. Liczba drutów w żyłach powinna być nie mniejsza niż określona w tablicy 14.2.1.

Tabela 14.2.1

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Znamionowy przekrój żył [mm²]</th>
<th>Najmniejsza liczba drutów w żyłce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>żyły okrągłe nieprasowane</td>
</tr>
<tr>
<td>1</td>
<td>0,5 – 6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>10 – 16</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>25 – 35</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>50 – 70</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>120 – 185</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>240 – 300</td>
<td>61</td>
</tr>
</tbody>
</table>

Uwaga: Stosunek znamionowych średnic najgrubszego i najcieńszego drutu w żyłach nie powinien przekraczać wartości 1,3 w przypadku żył prasowanych mechanicznie oraz wartości 1,8 w przypadku żył formowanych geometrycznie, nie prasowanych.

15.2.2 Druty miedzianych żył z izolacją gumową powinny być ocynowane lub pokryte innym odpowiednim stopem. Można nie stosować cynowania ani innego pokrycia wszystkich drutów albo tylko zewnętrznej ich warstwy, jeżeli wytwórnia zastosuje środki gwarantujące, że gumowa izolacja nie wpłynie szkodliwie na metal żyły.

15.3 Materiały izolacyjne

15.3.1 Rodzaje izolacji, które mogą być stosowane do izolowania żył w kablach i przewodach, podane są w tablicy 14.3.1. Możliwość zastosowania innych rodzajów izolacji podlega odrębnemu rozpatrzeniu przez PRS.
Tabela 14.3.1

<table>
<thead>
<tr>
<th>Rodzaje materiałów izolacyjnych</th>
<th>Skrócone oznaczenie</th>
<th>Maksymalna temperatura żyły kabla, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Warunki pracy normalne</td>
</tr>
<tr>
<td>a) Termoplasty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– z polichlorku winylu lub kopolimeru chlorku winylu i octanu winylu</td>
<td>PVC/A</td>
<td>60</td>
</tr>
<tr>
<td>b) Elastomery lub materiały termoutwardzalne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– z polietylenu usieciowanego</td>
<td>EPR</td>
<td>85</td>
</tr>
<tr>
<td>– z gumy silikonowej</td>
<td>XLPE</td>
<td>85</td>
</tr>
<tr>
<td>– z gumy etylenowo-propylenowej lub podobnej (EPM lub EPDM) bezchlorowcowej</td>
<td>S 95</td>
<td>95</td>
</tr>
<tr>
<td>– z polietylenu usieciowanego bezchlorowcowego</td>
<td>HF XLPE</td>
<td>85</td>
</tr>
<tr>
<td>– z gumy etylenowo-propylenowej lub podobnej (EPM lub EPDM) bezchlorowcowej</td>
<td>HF S 95</td>
<td>95</td>
</tr>
<tr>
<td>– z usieciowanych poliolefin do kabli bezchlorowcowych</td>
<td>HF 85</td>
<td>85</td>
</tr>
</tbody>
</table>

1) Temperatura żyły do obliczenia dopuszczalnej długotrwałej obciążalności prądowej kabli.
2) Ta temperatura nie jest właściwa w odniesieniu do żył ocynowanych.

Tabela 14.4.1

<table>
<thead>
<tr>
<th>Rodzaje materiałów powłokowych</th>
<th>Skrócone oznaczenie</th>
<th>Maksymalna temperatura żyły kabla, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Termoplasty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– z polichlorku winylu lub kopolimeru chlorku winylu i octanu winylu</td>
<td>ST 1</td>
<td>60</td>
</tr>
<tr>
<td>– materiały bezchlorowcowe</td>
<td>ST 2</td>
<td>85</td>
</tr>
<tr>
<td>b) Elastomery lub materiały termoutwardzalne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– z gumy polichloroprenowej,</td>
<td>SE 1</td>
<td>85</td>
</tr>
<tr>
<td>– z chlorosulfonowanego polietylenu lub z chlorowanej gumy polietylenowej,</td>
<td>SH</td>
<td>85</td>
</tr>
<tr>
<td>– materiały bezchlorowcowe</td>
<td>SHF 1</td>
<td>85</td>
</tr>
</tbody>
</table>

15.4 Powłoki ochronne

15.4.1 Powłoki ochronne kabli i przewodów mogą być wykonane z materiałów podanych w tabeli 14.4.1. Możliwość zastosowania powłok ochronnych z innych materiałów podlega odrębnemu rozpatrzeniu przez PRS.

Tabela 14.4.1

<table>
<thead>
<tr>
<th>Rodzaje materiałów powłokowych</th>
<th>Skrócone oznaczenie</th>
<th>Maksymalna temperatura żyły kabla, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Termoplasty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– z polichlorku winylu lub kopolimeru chlorku winylu i octanu winylu</td>
<td>ST 1</td>
<td>60</td>
</tr>
<tr>
<td>– materiały bezchlorowcowe</td>
<td>ST 2</td>
<td>85</td>
</tr>
<tr>
<td>b) Elastomery lub materiały termoutwardzalne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– z gumy polichloroprenowej,</td>
<td>SE 1</td>
<td>85</td>
</tr>
<tr>
<td>– z chlorosulfonowanego polietylenu lub z chlorowanej gumy polietylenowej,</td>
<td>SH</td>
<td>85</td>
</tr>
<tr>
<td>– materiały bezchlorowcowe</td>
<td>SHF 1</td>
<td>85</td>
</tr>
</tbody>
</table>

15.4.2 Powłoki ochronne powinny być jednakowej grubości, w granicach dopuszczalnych tolerancji na całej długości odcinka fabrykacyjnego i powinny obejmować kabel lub przewód współśrodkowo. Powłoki powinny tworzyć szczelną oponę ściśle przylegającą do chronionego ośrodka.

15.5 Przewody montażowe

15.5.1 Do połączeń wewnętrznych w rozdzielnicach i urządzeniach elektrycznych należy stosować izolowane przewody jednożyłowe (patrz też 2.3.3).

15.5.2 Przewody nie izolowane i szyny mogą być stosowane do połączeń wewnętrznych w urządzeniach elektrycznych. Połączenia zewnętrzne nieizolowanymi przewodami lub szynami mogą być stosowane pod warunkiem odpowiedniego ich osłonięcia.
15.6 Sieć kablowa

15.6.1 Wymagania ogólne

15.6.1.1 Należy stosować kable i przewody z żyłami wielodrutowymi o przekroju nie mniejszym niż:

1. 1,5 mm² – w obwodach zasilania i oświetlenia;
2. 0,75 mm² – w obwodach kontrolno-pomiarowych, sygnalizacji i sterowania urządzeń;
3. 0,5 mm² – w obwodach łączności wewnętrznej, niewpływających na bezpieczeństwo.

15.6.1.2 Najwyższa dopuszczalna temperatura izolacji zainstalowanego kabla lub przewodu powinna być wyższa od przewidywanej temperatury otoczenia o co najmniej 10°C.

15.6.1.3 W miejscach narażonych na działanie produktów naftowych i innych agresywnych czynników należy stosować kable w powłoce odporną na działanie danego środowiska.

Inne kable mogą być układane w tych miejscach pod warunkiem układania ich w metalowych rurach (patrz 14.6.8).

15.6.1.4 Kable układane w miejscach, gdzie mogą być narażone na uszkodzenia mechaniczne powinny mieć odpowiedni pancerz, zaś kable innych typów powinny być w takich miejscach zabezpieczone specjalnymi osłonami lub powinny być układane w rurach (patrz 14.6.8).

15.6.2 Dobór kabli i przewodów ze względu na obciążalność

15.6.2.1 Jeżeli dla stosowanych typów kabli nie jest określona obciążalność, to długotrwałe dopuszczalne obciążalności prądowe dla jednożyłowych kabli i przewodów w izolacji z różnych materiałów należy przyjmować zgodnie z tabelą 14.6.2.1.

Podane w tabeli obciążalności prądowe dotyczą następujących przypadków układania kabli:

1. nie więcej niż 6 kabli w jednej wiązce lub jednej warstwie, przylegających do siebie;
2. w dwóch warstwach niezależnie od liczby kabli w warstwie – pod warunkiem, że między grupą lub wiązką 6 kabli występuje swobodna przestrzeń dla przepływu powietrza chłodzącego.

Tabela 14.6.2.1

<table>
<thead>
<tr>
<th>Przekrój znamionowy żyły [mm²]</th>
<th>Dopuszczalna długotrwała obciążalność w amperach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>polichlorek winylu lub kopolimer chlorku winylu i octanu winylu</td>
</tr>
<tr>
<td></td>
<td>+ 60°C</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>62</td>
</tr>
<tr>
<td>70</td>
<td>62</td>
</tr>
<tr>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>90</td>
<td>62</td>
</tr>
<tr>
<td>100</td>
<td>62</td>
</tr>
<tr>
<td>120</td>
<td>62</td>
</tr>
<tr>
<td>150</td>
<td>62</td>
</tr>
<tr>
<td>200</td>
<td>62</td>
</tr>
<tr>
<td>250</td>
<td>62</td>
</tr>
</tbody>
</table>

X Maksymalna dopuszczalna temperatura robocza żyły, [°C].
15.6.2.2 Dopuszczalne długotrwałe obciążalności prądowe dla kabli dwu-, trzy- i czterożyłowych należy zmniejszyć w stosunku do wartości podanych w tabeli 14.6.2.1, stosując współczynniki poprawkowe:
0,85 – dla kabli dwużyłowych.
0,70 – dla kabli trzy- i czterożyłowych.

15.6.2.3 Jeżeli kable lub przewody instalowane są w obwodach z obciążeniem przerywanym lub dorywczo, to dopuszczalne obciążalności prądowe należy określić mnożąc wartość obciążalności dopuszczalnej długotrwałej, wyznaczonej z tabeli 14.6.2.1 przez współczynnik poprawkowy z tabeli 14.6.2.3.

Tabela 14.6.2.3
Wartości współczynników poprawkowych w zależności od rodzaju obciążenia

<table>
<thead>
<tr>
<th>Przekrój znamionowy żyły [mm²]</th>
<th>Praca przerywana 40%</th>
<th>Praca dorywcza 30-minutowa</th>
<th>Praca dorywcza 60-minutowa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z powłokami metalowymi</td>
<td>bez powłok metalowych</td>
<td>z powłokami metalowymi</td>
</tr>
<tr>
<td>1</td>
<td>1,24</td>
<td>1,09</td>
<td>1,06</td>
</tr>
<tr>
<td>1,5</td>
<td>1,26</td>
<td>1,09</td>
<td>1,06</td>
</tr>
<tr>
<td>2,5</td>
<td>1,27</td>
<td>1,10</td>
<td>1,06</td>
</tr>
<tr>
<td>4</td>
<td>1,30</td>
<td>1,14</td>
<td>1,06</td>
</tr>
<tr>
<td>6</td>
<td>1,33</td>
<td>1,17</td>
<td>1,08</td>
</tr>
<tr>
<td>10</td>
<td>1,36</td>
<td>1,21</td>
<td>1,09</td>
</tr>
<tr>
<td>16</td>
<td>1,40</td>
<td>1,26</td>
<td>1,10</td>
</tr>
<tr>
<td>25</td>
<td>1,42</td>
<td>1,30</td>
<td>1,12</td>
</tr>
<tr>
<td>35</td>
<td>1,44</td>
<td>1,33</td>
<td>1,14</td>
</tr>
<tr>
<td>50</td>
<td>1,46</td>
<td>1,37</td>
<td>1,17</td>
</tr>
<tr>
<td>70</td>
<td>1,47</td>
<td>1,40</td>
<td>1,21</td>
</tr>
<tr>
<td>95</td>
<td>1,49</td>
<td>1,42</td>
<td>1,25</td>
</tr>
<tr>
<td>120</td>
<td>1,50</td>
<td>1,44</td>
<td>1,28</td>
</tr>
<tr>
<td>150</td>
<td>1,51</td>
<td>1,45</td>
<td>1,32</td>
</tr>
<tr>
<td>185</td>
<td>–</td>
<td>–</td>
<td>1,36</td>
</tr>
<tr>
<td>240</td>
<td>–</td>
<td>–</td>
<td>1,41</td>
</tr>
<tr>
<td>300</td>
<td>–</td>
<td>–</td>
<td>1,46</td>
</tr>
</tbody>
</table>

15.6.2.4 Obciążalności prądowe podane w tabeli 14.6.2.1 odnoszą się do temperatury otoczenia + 40°C. Dla innych temperatur otoczenia wartość obciążalności dopuszczalnej długotrwałej należy określić mnożąc wartości podane w tabeli 14.6.2.1 przez współczynniki poprawkowe podane w tabeli 14.6.2.4.

Tabela 14.6.2.4
Wartości współczynników poprawkowych w zależności od temperatury otoczenia

<table>
<thead>
<tr>
<th>Maksymalna temperatura żyły, [°C]</th>
<th>Temperatura otoczenia, [°C]</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>1,12</td>
<td>1,00</td>
<td>0,87</td>
<td>0,71</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>1,09</td>
<td>1,00</td>
<td>0,89</td>
<td>0,78</td>
<td>0,63</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>1,07</td>
<td>1,00</td>
<td>0,90</td>
<td>0,81</td>
<td>0,70</td>
<td>0,57</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>1,06</td>
<td>1,00</td>
<td>0,93</td>
<td>0,84</td>
<td>0,76</td>
<td>0,65</td>
<td>0,54</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>1,06</td>
<td>1,00</td>
<td>0,93</td>
<td>0,87</td>
<td>0,79</td>
<td>0,71</td>
<td>0,61</td>
<td>0,50</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1,06</td>
<td>1,00</td>
<td>0,94</td>
<td>0,89</td>
<td>0,82</td>
<td>0,75</td>
<td>0,67</td>
<td>0,58</td>
<td>0,47</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1,05</td>
<td>1,00</td>
<td>0,95</td>
<td>0,90</td>
<td>0,84</td>
<td>0,78</td>
<td>0,70</td>
<td>0,64</td>
<td>0,55</td>
<td>0,45</td>
<td>–</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>1,05</td>
<td>1,00</td>
<td>0,95</td>
<td>0,90</td>
<td>0,85</td>
<td>0,80</td>
<td>0,73</td>
<td>0,68</td>
<td>0,60</td>
<td>0,52</td>
<td>0,45</td>
</tr>
</tbody>
</table>
15.6.2.5 Zamiast wykonywania obliczeń wynikających z 14.6.2.1 – 14.6.2.4 wartość obciążalności dopuszczalnej długotrwale można określić w oparciu o Publikację Nr 15/P – Tablice obciążalności prądowej kabli, przewodów i szei dla wyposażenia okrętowego.

15.6.2.6 Kable do obwodów końcowych oświetlenia i ogrzewania należy dobierać na znamionowe prądy obciążenia, bez współczynników obniżających.

15.6.3 Dobór przekrojów kabli ze względu na spadek napięcia

15.6.3.1 Spadek napięcia na kablicach łączących prądnice z rozdzielnicą główną lub awaryjną nie powinien przekraczać 1%.

15.6.3.2 Spadek napięcia na kablicach pomiędzy rozdzielnicą główną a odbiornikiem przy znamionowym obciążeniu powinien być nie większy niż:
 1. 5% – dla odbiorników oświetleniowych i sygnalizacyjnych, przy napięciach wyższych niż 50 V;
 2. 10% – dla odbiorników oświetleniowych i sygnalizacyjnych, przy napięciach do 50 V;
 3. 7% – dla odbiorników silowych i grzewczych, niezależnie od wielkości napięcia;
 4. 10% – dla odbiorników silowych na pracę dorywczo i przerywaną, niezależnie od wielkości napięcia.

15.6.3.3 Kable służące do zasilania silników elektrycznych prądu przemiennego z bezpośrednim rozruchem powinny być dobrane tak, aby spadek napięcia w chwili rozruchu nie powodował zakłóceń w pracy innych urządzeń elektrycznych zasilanych z tych samych źródeł energii elektrycznej.

15.6.4 Układanie kabli

15.6.4.1 Trasy kabli powinny być w miarę możliwości proste i dostępne oraz powinny przebiegać przez miejsca, w których kable nie będą narażone na oddziaływanie oleju, paliwa, wody i nadmiernego podgrzewania.

 Odległości tras kablowych od źródeł ciepła powinny być nie mniejsze niż 100 mm.

15.6.4.2 W odległości mniejszej niż 50 mm od dna podwójnego i od zbiorników paliwa lub olejów smarowych nie należy układać żadnych kabli. Odległości kabli od poszycia zewnętrznego oraz od przeciwpożarowych i wodoszczelnych grodzi i pokładów powinny być nie mniejsze niż 20 mm.

15.6.4.3 Nie należy układania kabli w zbiornikach ani ładowniach przeznaczonych do przewozu palnych cieczy, z wyjątkiem przypadków przewidzianych w 2.7.

15.6.4.4 Kable z zewnętrznej powłoką metalową można układać na konstrukcjach ze stopów lekkich lub mocować za pomocą uchwytów z takich stopów tylko w przypadku zastosowania trwałej ochrony antykorozyjnej.

15.6.4.5 Na statkach przeznaczonych do przewozu niebezpiecznych ładunków suchych w zasadzie nie należy prowadzić kabli przelotowych przez ładownie. Dopuszczalność i szczegóły rozwiązania konstrukcyjnego prowadzenia kabli w takich ładowniach powinny być uzgodnione z PRS.

15.6.4.6 Nie zaleca się układania kabli pod podłogą pomieszczeń maszynowych. Jeżeli takie ułożenie jest konieczne, kable należy układac w rurach metalowych lub zatykowych kanałach (patrz 14.6.8).

15.6.4.7 Kable z izolacją o różnych temperaturach granicznych, układane we wspólnych trasach kablowych, należy tak układać, aby kable nie nagrzewały się do temperatury wyższej, niż dopuszczalna.

15.6.4.8 Kabli z różnymi powłokami ochronnymi, z których mniej trwałe mogą podlegać uszkodzeniom, nie należy układać w wspólnej rurze, wspólnym kanale ani w inny sposób wspólnie i bez zamożowania.

15.6.4.9 Kable obwodów prądowych elektrycznego napędu głównego należy układać oddzielnie od kabli innego przeznaczenia.
15.6.4.10 Żył kabla wielojętnego nie należy stosować do zasilania energią elektryczną i sterowania nie związanych ze sobą ważnych urządzeń. W kablu wielojętnym nie należy stosować równocześnie obwodów na napięcie bezpieczne i na napięcie robocze przekraczające bezpieczne.

15.6.4.11 W przypadku układania kabli w kanalach i innych konstrukcjach wykonanych z palnych materiałów należy zabezpieczyć te materiały w rejonie ułożenia kabli przed działaniem ognia za pomocą odpowiednich środków ognioodpornych, jak wykładziny, pokrycie lub nasycenie środkami niepalnymi.

15.6.4.12 Kabli nie należy ułożyć w cieplnej lub akustycznej izolacji, jeżeli izolacja ta wykonana jest z materiałów palnych. Kable należy oddzielić od takiej izolacji wykładziną z niepalnego materiału lub umieścić w odległości nie mniejszej niż 20 mm od takiej izolacji.

15.6.4.13 W przypadku układania kabli w izolacji cieplnej lub akustycznej wykonanej z niepalnych materiałów, kable należy dobierać z uwzględnieniem dodatkowego ich nagrzewania.

15.6.4.14 Kabl i przewody uziemiające urządzeń ustawionych na amortyzatorach powinny być tak doprowadzone, aby nie uległy uszkodzeniu w warunkach eksploatacji.

15.6.4.15 Pomiędzy kablami a rurociągami lub przewodami elastycznymi instalacji hydraulicznej podnoszenia i opuszczania sterówki powinna być zachowana odległość minimum 100 mm.

15.6.4.16 Kable zasilające sterówki przystosowane do podnoszenia i opuszczania powinny być odpowiednio zamocowane i powinny zachowywać swoją elastyczność również w niskiej temperaturze (do –20ºC) oraz być odpornie na warunki środowiskowe.

15.6.4.17 Kable zasilania głównego i awaryjnego nie mogą przebiegać przez to samo pomieszczenie. PRS może odstąpić od tego wymogu, jeżeli:
 1. kable zasilania głównego i awaryjnego są ułożone jak najdalej od siebie, lub
 2. awaryjne kable zasilające są ognioodporne. Wymóg ten uznaje się za spełniony, jeżeli kable spełniają wymagania norm międzynarodowych serii IEC 60331.

15.6.5 Mocowanie kabli

15.6.5.1 Kabl powinny być odpowiednio zamocowane za pomocą uchwytów, obiejmek itp. elementów wykonanych z metalu lub innego materiału niepalnego lub trudno zapalnego. Powierzchnia uchwytów powinna mieć dostateczną szerokość i nie powinna mieć ostrych krawędzi. Uchwyty powinny być tak dobrane, aby kabel był dobrze umocowany, lecz bez narażenia na uszkodzenie powłok ochronnych.

15.6.5.2 Odległości pomiędzy kolejnymi elementami mocującymi przy poziomym układaniu kabli nie powinny przekraczać wartości podanych w tabeli 14.6.5.2. Przy pionowym układaniu kabli odległości te mogą być zwiększone o 25%.
Tabela 14.6.5.2

<table>
<thead>
<tr>
<th>Zewnętrzna średnica kabla, [mm]</th>
<th>Odległości pomiędzy uchwyty, [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>powyżej</td>
<td>dla kabli bez pancera dla kabli z pancerzem</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>250</td>
</tr>
<tr>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>30</td>
<td>350</td>
</tr>
<tr>
<td>–</td>
<td>400</td>
</tr>
<tr>
<td>–</td>
<td>450</td>
</tr>
</tbody>
</table>

15.6.5.3 Kable należy tak mocować, aby mechaniczne obciążenia powstające w kablach nie przenosiły się na ich przyłącza.

15.6.5.4 Tory kablewne i kable układane równolegle do poszycia kadłuba statku należy mocować do konstrukcji kadłuba, a nie do poszycia.
Na grodziach wodoszczelnych i masztach kable należy mocować za pomocą odpowiednich konstrukcji, jak kasety, uchwyty lub podkłady kablewne.

15.6.5.5 Kable prowadzone równolegle do powierzchni, na których może następować kondensacja wilgoci, należy układać na wspornikach lub perforowanych podkładach w taki sposób, aby istniała wolna przestrzeń pomiędzy kablami i tymi powierzchniami.

15.6.5.6 Tory kablewne należy prowadzić z możliwie minimalną liczbą skrzyżowań. W miejscu skrzyżowania torów kablewych należy stosować mostki, tak aby szczelina powietrzna pomiędzy krzyżującymi się torami wyniosła co najmniej 5 mm.

15.6.5.7 Dla statków z tworzyw sztucznych (laminatów szklanych) dopuszcza się stosowanie równoleżne zmienionych wymagań dotyczących prowadzenia, mocowania i uszczelniania przejść kabli i tras kablewych w odniesieniu do wymagań zawartych w Przepisach dla statków stalowych, uwarunkowanych technologią produkcji kadłubów z tworzyw sztucznych, stosowanymi materiałami itp.

15.6.6 Przejścia kabli przez pokłady, grodzie i ścianki

15.6.6.1 Przejścia kabli przez wodoszczelne, gazoszczelne i ognioodporne grodzie i pokłady powinny być uszczelnione w taki sposób, aby zachowana została szczelność (lub odporność) grodzie/pokładu i aby naprężenia powstające przy sprężystych odkształcenach kadłuba nie były przenoszone na kable.

15.6.6.2 Przy prowadzeniu kabli przez niewodoszczelne przegrody lub elementy konstrukcji o grubości mniejszej niż 6 mm w otworach do przejść kabli należy umieszczać wykładziny lub tulejki chroniące przed uszkodzeniem. Przy grubościach większych niż 6 mm można nie stosować wykładzin ani tulejek, lecz należy zaokrąglać krawędzie otworów.

15.6.6.3 Kable przechodzące przez pokłady należy zabezpieczyć, do odpowiedniej wysokości od pokładu, przed możliwymi uszkodzeniami mechanicznymi, a w miejscach, gdzie uszkodzenia takie są mało prawdopodobne – do wysokości co najmniej 200 mm. Przejścia kabli należy załąć masą kablową. Przy układaniu pojedynczych kabli zamiast zalewania masą mogą być stosowane dławnice.

15.6.7 Masy kablowe i szczelniwa

15.6.7.1 Do wypełnienia skrzynek kablewych w grodziach wodoszczelnych i pokładach należy stosować masy uszczelniające, mające dobrą przyczepyność do wewnętrznych powierzchni skrzynek kablewych i do powłok kabli, odporne na działanie wody i produktów naftowych, nie tworzące jam usadowych i niezmniejszające szczelności przy długotrwałej eksploatacji w warunkach omówionych w 2.1.1.1, 2.1.1.2 i 2.1.2.1.
15.6.8 Układanie kabli w rurach i kanałach kablowych

15.6.8.1 Rury i kanały do układania kabli powinny być metalowe i zabezpieczone od strony zewnętrznej i wewnętrznej przed korozją. Wewnętrzna powierzchnia rur powinna być równa i gładka. Końce rur powinny być tak obrobione lub zabezpieczone, aby wciągane kable nie uległy uszkodzeniu.

Po uzgodnieniu z PRS – dopuszcza się stosowanie rur z tworzyw sztucznych (PCW).

15.6.8.2 Promień zgięcia rur i kanałów powinien być nie mniejszy od dopuszczalnego dla ułożonego w nim kabla o największej średnicy (patrz 14.6.4.13).

15.6.8.3 Sumaryczna powierzchnia poprzecznych przekrojów wszystkich kabli, określona z ich zewnętrznych średnic, powinna być nie większa od 40% powierzchni wewnętrznego przekroju poprzecznego rury.

15.6.8.4 Rury i kanały powinny być ciągłe pod względem mechanicznym i elektrycznym oraz powinny być skutecznie uziemione, jeżeli przez samo ułożenie rur i kanałów nie zostało zapewnione skuteczne uziemienie.

15.6.8.5 Rury i kanały powinny być tak ułożone, aby nie mogła gromadzić się w nich woda. W razie konieczności należy przewidzieć w rurach i kanałach otwory wentylacyjne, możliwie w miejscach najniższych i najwyższych, w celu zapewnienia cyrkulacji powietrza i zapobiegania kondensacji pary wodnej. Takie otwory można wykonywać tylko w miejscach, gdzie nie zwiększy to niebezpieczeństwa wybuchu lub pożaru.

15.6.8.6 Jeżeli na podstawie postanowienia zawartego w 14.1.1 PRS wyraził zgodę na stosowanie kabli z powłoką palną, to powinny one być ułożone tylko w rurach metalowych.

15.6.9 Specjalne wymagania dotyczące instalowania jednożyłowych kabli prądu przemiennego

15.6.9.1 Nie zaleca się stosowania kabli jednożyłowych w instalacjach prądu przemiennego. Jeżeli zastosowanie takich kabli jest konieczne, to kable przewodzące prąd większy niż 20 A powinny odpowiadać następującym wymaganiom:

.1 kable nie powinny mieć pokryć z materiału magnetycznego;
.2 kable należące do jednego obwodu powinny być ułożone na tej samej trasie lub w tej samej rurze; ułożenie takich kabli w różnych rurach jest dopuszczalne tylko w przypadku stosowania rur z materiałów niemagnetycznych;
.3 uchwyty kabelowe, z wyjątkiem wykonanych z materiałów niemagnetycznych, powinny obejmować wszystkie kable jednożyłowe należące do tego samego obwodu;
.4 odległości pomiędzy kablami nie powinny być większe niż jedna średnica kabla.

15.6.9.2 Przy prowadzeniu kabli jednożyłowych przez grodzie lub pokłady należy zwracać uwagę na to, aby między kablami należącymi do tego samego obwodu nie było materiałów magnetycznych. Odległości pomiędzy takimi kablami i materiałami magnetycznymi nie powinny być mniejsze niż 75 mm.

15.6.10 Przyłączenie i łączenie kabli

15.6.10.1 Końce kabli należy uszczelniać w sposób zapobiegający przenikaniu wilgoci do wnętrza kabla.

15.6.10.2 Powłoka ochronna kabla wprowadzonego do urządzenia powinna wchodzić do wnętrza urządzenia co najmniej 10 mm poza otwór wejścia.

15.6.10.3 Połączenia kabli w miejscach ich rozgałęzień należy wykonywać w gniazdach rozgałęźnych za pomocą zacisków.

15.6.10.4 Jeżeli przy układaniu kabli wyniknie konieczność wykonania dodatkowych połączeń należy ograniczyć je do minimum i należy je wykonywać w odpowiednich gniazdach rozgałęźnych wyposażonych w zaciski. Całe połączenie powinno być zabezpieczone przed działaniem czynników zewnętrznych.
Dopuszczalność stosowania dodatkowego łączenia kabli lub łączenia uszkodzonych kabli będzie odrębnie rozpatrzona przez PRS, przy uwzględnieniu wymagań normy IEC 60092-352 (pkt. 3.28 i Załącznik D).

15.6.10.5 Kable prowadzące do sterówki, która może być podnoszona i opuszczana, powinny prze- chodzić przez skrzynkę wyposażoną w zaciski. Od skrzynki do urządzeń elektrycznych znajdujących się w sterówce należy stosować giętkie odcinki przewodów, mające odpowiedni zapas długości oraz tak ułożone i zamocowane, aby nie mogły ulec uszkodzeniu przy ruchu sterówki.

16 UKŁADY ZDALNEGO STEROWANIA I AUTOMATYKI

16.1 Zakres zastosowania

16.1.1 Wymagania niniejszego rozdziału mają zastosowanie do wszystkich, instalowanych na statku, urządzeń (mechanizmów) zautomatyzowanych, poszczególnych układów automatyki, a także objętych nadzorem PRS elementów i zespołów tych układów.

16.1.2 Automatyzacja urządzeń i instalacji nie jest (z wyjątkiem przypadków szczególnych, określonych w Przepisach) warunkiem uzyskania przez statek klaszy PRS, jednakże w przypadku jej wprowadzenia należy spełnić wymagania niniejszego rozdziału.

16.2 Wymagania konstrukcyjne

16.2.1 Wymagania ogólne

16.2.1.1 Niezależnie od wyposażenia zautomatyzowanych urządzeń w układy automatycznego lub zdalnego sterowania oraz w układy kontrolne, należy zapewnić możliwość ręcznego sterowania lokalnego tymi urządzeniami.

W każdym przypadku uszkodzenia w układzie sterowania automatycznego lub zdalnego powinna być zachowana możliwość sterowania lokalnego.

16.2.1.2 W przypadku zdalnego sterowania mechanizmami lub instalacją, obsługujący powinien mieć możliwość wystarczającego sprawdzenia ze stanowiska sterowania, czy zadana czynność została wykonana przez układ sterowania.

16.2.2 Wymagania dla elementów i zespołów automatyki

16.2.2.1 Elementy i zespoły stosowane w układach automatyki powinny, oprócz spełnienia wymagań niniejszego rozdziału, dodatkowo odpowiadać wymaganiami odpowiednich części Przepisów.

16.2.2.2 Poszczególne elementy i zespoły układów, a także ich przyłącza zewnętrznne powinny być wyraźnie i trwale oznaczone. Oznaczenie to powinno pozwalać na łatwą ich identyfikację z dokumentacją techniczną, a w przypadku czujników powinno podawać również ich przeznaczenie i wartości nastaw.

16.2.2.3 Urządzenia tłumiące (amortyzatory), stosowane do zabezpieczenia elementów i zespołów przed skutkami udarów i drgań, powinny być wyposażone w ograniczniki chroniące je przed uszkodzeniem w przypadku nadmiernych amplitud (wychyleń).

16.2.2.4 Elementy i zespoły przeznaczone do zainstalowania w pomieszczeniach lub rejonych zagrożonych wybuchem powinny być w wykonaniu przeciwybuchowym.

16.2.2.5 Elementy regulacyjne, przeznaczone dla ustalenia nastawy, powinny być zabezpieczone przed samoczynną zmianą ustalonego nastawienia, przy czym powinna być zachowana możliwość powtórnego ich zabezpieczenia, w przypadku zmiany nastawy.

16.2.2.6 Wymienne bloki (kasety) mające złącza wtykowe powinny być wykonane, aby wykluczać możliwość pomyłki przy ich wymianie oraz zapewniać możliwość skutecznego i trwałego zamocowania w pozycji pracy.
Jeżeli właściwości konstrukcyjne lub funkcyjne elementu lub zespołu tego wymagają, to powinny mieć one trwale oznaczoną pozycję poprawnego zamontowania lub powinny być tak wykonane, aby zamontowanie ich w pozycji nieprawidłowej było niemożliwe.

16.2.2.7 Płytki obwodów drukowanych po stronie, na której rozmieszczone są ścieżki prądowe – należy pokrywać lakierem elektroizolacyjnym.

16.2.2.8 Mechanizmy wykonawcze (siłowniki, nastawniki itp.) powinny być wykonane tak, aby niemożliwe były samoczynne niekontrolowane przemieszczenia ich elementów roboczych.

16.2.2.9 Elementy i zespoły pneumatyczne i hydrauliczne powinny wytrzymać bez uszkodzeń krótkotrwałe przeciążenia wywoływane wzrostem ciśnienia czynnika roboczego do wartości 1,5 ciśnienia nominalnego.

16.2.2.10 Czujniki ciśnienia należy przyłączać do instalacji za pomocą kurkówek trójdęglowych, pozwalających na:
 – podanie ciśnienia kontrolnego,
 – odpowietrzenie przewodu,
 – odcięcie uszkodzonego czujnika.

16.2.2.11 Elementy oraz zespoły pneumatyczne i hydrauliczne powinny zachowywać swoje charakterystyki funkcyjne przy odchyleniach ciśnienia zasilania o ± 20% od wartości nominalnej.

16.2.3 Wymagania dla układów automatyki

16.2.3.1 Obwody elektryczne lub elektroniczne układów automatyki powinny być wyposażone w urządzenia zabezpieczające, zapewniające selektywne odłączenie uszkodzonych części układu.

16.2.3.2 Poszczególne układy automatyki powinny być wykonane tak, aby uszkodzenie w jednym obwodzie lamp, syren itp. urządzeń sygnalizacji, nie powodowało zakłóceń w pracy pozostałych obwodów.

16.2.3.3 Zanik zasilania w układach sterowania automatycznego lub zdalnego nie powinien prowadzić do stanów niebezpiecznych.

16.2.3.4 Układy automatyczki powinny być wykonane z takich elementów i zespołów, aby ich wymiana na inne tego samego typu nie wpływała na pracę układu. Niezbędna regulacja powinna być możliwa za pomocą prostych środków.

16.2.3.5 Układy automatyki należy zabezpieczyć przed możliwością błędnego zadziałania w wyniku krótkotrwałych zmian parametrów powodowanych kołysaniem statku, załączeniem lub wyłączeniem mechanizmów i tym podobnych normalnych wahań parametrów.

16.2.3.6 Układy automatyki powinny być tak wykonane, aby typowe uszkodzenia tych układów nie prowadziły do stanów niebezpiecznych oraz nie powodowały uszkodzeń wtórnych w tych układach i obsługiwanych przez nie urządzeniach zautomatyzowanych.

16.2.3.7 Każdy układ sterowania zdalnego lub automatycznego powinien być tak wykonany, aby po awaryjnym zatrzymaniu przez układ bezpieczeństwa, ponowne uruchomienie urządzenia nie mogło nastąpić samoczynnie (np. bez sprowadzenia elementu sterowniczego do pozycji wyjściowej).

16.2.3.8 Elementy wymienne i regulowane układów automatyki, a także punkty pomiarowe powinny być tak rozmieszczone, aby stałe zapewniony był do nich swobodny dostęp.

16.2.3.9 Elementy lub zespoły układów automatyki należy wykonywać tak, aby istniała możliwość przeprowadzenia pomiarów kontrolnych w czasie ich pracy.

16.2.3.10 Zakres pomiarowy czujników o działaniu analogowym powinien przekraczać zakres zmian sygnału wejściowego (parametru mierzonego) co najmniej o 20%.
16.2.3.11 Ciecz stosowana w układach hydraulicznych powinna mieć:
.1 zdolność do długotrwałego zachowania fizycznych właściwości roboczych we wszystkich warunkach eksploatacji;
.2 dostateczne właściwości smarne;
.3 temperaturę zapłonu par nie niższą niż 60°C oraz nie powinna:
.4 działać niszczącą na materiały elementów i rurociągów;
.5 być toksyczna.
Lepkość cieczy hydraulicznej powinna pozostać stała w całym zakresie temperatur roboczych.

16.2.3.12 Stosowane w układach automatyki filtry powinny być tak usytuowane lub być takiej konstrukcji, aby istniała możliwość ich czyszczenia w czasie pracy układu.

16.2.3.13 Hydrauliczne układy automatyki nie powinny łączyć się z innymi instalacjami i powinny być zasiane z oddzielnych zbiorników.
Na podstawie odrębnego uzgodnienia z PRS – w części wykonawczej układu hydraulicznego może być wyjątkowo stosowana ciecz robocza z innej instalacji, pod warunkiem zastosowania skutecznych urządzeń oczyszczających.

16.2.3.14 Zakończenia rurociągów dołotowych i powrotnych do zbiorników powinny być doprowadzone poniżej poziomu cieczy w zbiorniku, z uwzględnieniem wahań zachodzących w czasie pracy i przy przechylach statku.

16.2.3.15 Pneumatyczne układy automatyki powinny być wyposażone w skutecznie działające urządzenia zapewniające wymagany stopień czystości i suchości powietrza.

16.2.3.16 Stosowane w pneumatycznych układach automatyki napędu głównego i elektronicznych urządzeń odwadniających i filtrujących powinny być w zasadzie zdwojone i połączone między sobą w taki sposób, aby istniała możliwość pracy jednego z nich w czasie, gdy drugie jest odłączone. Można nie stosować podwójnych urządzeń odwadniających i filtrujących, jeżeli ich oczyszczanie odbywa się automatycznie albo konstrukcja tych urządzeń pozwala na szybkie wymianę elementów zanieczyszczonych bez konieczności przerywania dopływu powietrza.

16.2.3.17 W rurociągach zasilającym układy pneumatyczne należy zainstalować zawory bezpieczeństwa, zapobiegające wzrostowi ciśnienia do wartości większej niż 1,1 wartości ciśnienia roboczego.
Jeżeli stosuje się zawory redukcyjne, to powinny być one zawsze zdwojone.

16.2.3.18 Przy jednoczesnym usytuowaniu w pulpitach, tablicach itp. zespołów elementów hydraulicznych, pneumatycznych, elektrycznych i elektronicznych – należy je tak wzajemnie rozdzielić, aby ewentualne przecieki ciekłego czynnika roboczego nie mogły szkodliwie oddziaływać na elementy elektryczne, elektroniczne lub pneumatyczne.
Te rejony tablic, pulpitów i innych zespołów, w których usytuowane jest wyposażenie zawierające cieczy czynnik roboczy, powinny być wyposażone w wanny ściękowe z rurami ściękowymi.

16.2.3.19 W przypadku stosowania elementów lub zespołów wymagających chłodzenia wymuszonego należy stosować skuteczne środki zapobiegające ich uszkodzeniu przy braku chłodzenia. Ponadto należy zapewnić możliwość pracy elementów lub zespołów w przypadku ich zanieczyszczenia powietrzem chłodzącym.

16.2.3.20 Elementy służące do sterowania powinny być rozmieszczone w sposób zapewniający swobodny do nich dostęp, a także powinny być oznaczone odpowiednio do ich przeznaczenia i zabezpieczone przed samoczynną zmianą położenia.

16.3 Zasilanie układów automatyki

16.3.1 Zasilanie energią elektryczną układu sterowania napędem głównym powinno odbywać się dwoma niezależnymi obwodami. Przełączenie obwodów zasilania może być automatyczne lub ręczne ze
stanowiska sterowania. Układ sterowania zespołami prądotwórczymi powinien być zasilany tak, aby jego działanie było niezależne od istnienia napięcia w rozdzielnicy głównej.

16.3.2 Przy zasilaniu układów sterowania automatycznego mechanizmami pomocniczymi z obwodu zasilającego napęd tych mechanizmów należy zapewnić możliwość uruchomienia mechanizmu rezerwowego (dublującego) w przypadku zaniku napięcia w obwodzie zasilającym napęd mechanizmu aktualnie pracującego.

16.3.3 Układ alarmowy powinien być zasilany w sposób ciągły.
W przypadku zaniku zasilania podstawowego, włączenie źródła rezerwowego powinno następować automatycznie. Źródłem tym może być bateria akumulatorów zdolna do zasilania układu co najmniej przez 15 min.
Zanik zasilania podstawowego powinien być sygnalizowany.

16.3.4 Układy automatyki lub ich części wykonane jako hydrauliczne lub pneumatyczne powinny być zasilane za pomocą dwóch sprężarek lub dwóch pomp.

16.4 Układy kontrolne

16.4.1 Układy alarmowe

16.4.1.1 Zależnie od zakresu automatyzacji urządzeń – układ alarmowy powinien podawać następujące rodzaje sygnałów:
.1 alarm o przekroczeniu granicznych wartości parametrów;
.2 alarm o zadziałaniu układu bezpieczeństwa;
.3 alarm o zaniku energii zasilającej poszczególne układy automatyki lub o włączeniu zasilania rezerwowego;
.4 alarm o zmianie innych wielkości lub stanów wynikających z wymagań szczegółowych niższej części Przepisów.
Stany alarmowe urządzeń maszynowych powinny być wskazywane na odpowiednich stanowiskach sterowania tymi urządzeniami.

16.4.1.2 Układ alarmowy powinien działać niezależnie od układów sterowania i bezpieczeństwa, tak aby uszkodzenie lub niesprawność funkcjonalna tych układów nie uniemożliwiała pracy układu alarmowego. Możliwość połączenia tych układów (ograniczonego wyłącznie do źródła sygnału) podlega odrębному rozpatrzeniu przez PRS.

16.4.1.3 Układ alarmowy powinien mieć takie właściwości samokontroli, aby w przypadku przewrotania obwodu lub innych typowych uszkodzeń następowalo podanie sygnału alarmowego.

16.4.1.4 Układ alarmowy powinien przekazywać jednocześnie sygnały świetlne i dźwiękowe. Układ powinien mieć właściwości podawania jednoczesnego kilku sygnałów alarmowych.

16.4.1.5 Sygnał świetlny powinien być przekazywany światłem migającym i powinien wskazywać przyczynę powstania alarmu. Całkowite skasowanie sygnału świetlnego powinno być możliwe dopiero po usunięciu przyczyn jego powstania. Potwierdzenie przyjęcia sygnału świetlnego powinno być wyraźnie widoczne przez zmianę charakteru tego sygnału (np. zmiana ze światła migającego na ciągłe lub zmiana częstotliwości migania).

16.4.1.6 Sygnał dźwiękowy może być wspólny dla różnych rodzajów sygnałów. Jeżeli przewiduje się możliwość wyłączenia sygnału dźwiękowego po zadziałaniu, to powinna być zachowana gotowość do podania następnego sygnału, związanego z innym alarmem, zanim przyczyna poprzedniego sygnału zostanie usunięta. Sygnały dźwiękowe odnoszące się do urządzeń maszynowych powinny wyraźnie odróżniać się od dźwięków pochodzących z otoczenia oraz od sygnałów innych alarmów – np. pożarowego, o wpuszczeniu CO2 itp.
16.4.1.7 W celu ułatwienia wykrycia krótkotrwałych stanów alarmowych samoczynnie zanikających, układ powinien zabezpieczać zachowanie informacji tak, aby sygnalizacja przejściowych stanów alarmowych była utrzymywana do chwili ich potwierdzenia.

16.4.1.8 Odlaczanie lub pominięcie dowolnej części układu alarmowego powinno być wyraźnie wskazywane.

16.4.1.9 Powinna być zapewniona możliwość dokonania próby działania układu alarmowego w czasie normalnej pracy urządzeń. Tam, gdzie jest to praktycznie możliwe, należy przewidzieć w dogodnych i dostępnym miejscach urządzenie umożliwiające sprawdzenie działania czujników w taki sposób, aby nie wpływało to na pracę mechanizmów.

16.4.1.10 Krótkotrwała przerwa w zasilaniu układu alarmowego nie powinna powodować utraty informacji o stanach alarmowych podawanych przed przerwą.

16.4.1.11 Barwa sygnału świetlnego powinna być dostosowana do rodzaju sygnału zgodnie z 4.5.5.

16.4.1.12 Jeżeli przewiduje się zastosowanie ściemniacza dla wskaźników dowolnego układu alarmowego instalowanego na mostku nawigacyjnym, to powinien on być tak wykonany, aby niemożliwe było całkowite ściemnienie podświetlenia tych wskaźników.

16.4.1.13 Dla silników spalinowych wyposażonych w rurociągi wysokociśnieniowe łączące pompę paliwową z wtryskiwaczami należy przewidzieć alarm przecieków z takiego rurociągu. Alarm nie jest wymagany dla silników dwucylindrowych i silników zainstalowanych na pokładzie otwartym, zasilających wciągnik kotwicowy i kabeśmy.

16.4.1.14 Dla układu napędowego statku należy przewidzieć układ alarmowy, podający sygnał przy przekroczeniu:
- maksymalnej temperatury wody chłodzącej silnik napędowy,
- minimalnego ciśnienia oleju smarowego silnika napędowego i przekładni,
- minimalnego ciśnienia oleju i powietrza sterującego silnikiem napędowym nawrotnym, przekładnią i śrubą nastawną.

16.4.2 Układ bezpieczeństwa

16.4.2.1 Układ bezpieczeństwa poszczególnych urządzeń zautomatyzowanych powinien działać automatycznie przy przekroczeniu granicznych wartości parametrów grożącym awarią oraz powinien obejmować wszystkie możliwe do przewidzenia stany awaryjne, rozpatrzone z uwzględnieniem właściwości i cech zabezpieczanego mechanizmu, tak aby:
- zostały przywrócone normalne warunki pracy (przecieki w płynach) – lub
- praca urządzenia została czasowo dostosowana do zaistniałych warunków (przez redukcję obciążenia) – lub
- mechanizmy zostały zabezpieczone przed awarią przez zatrzymanie.

16.4.2.2 Należy uniemożliwić samoczynne wyłączenie układu napędowego lub jego części przez układ bezpieczeństwa, dopóki nie będzie nagłe zagrożenia awarią, kompletnym zniszczeniem lub eksplozją np. w wyniku osiągnięcia nagonów.

16.4.2.3 Należy przewidzieć środki pozwalające na stwierdzenie przyczyny zadziałania układu bezpieczeństwa.

16.4.2.4 Układ bezpieczeństwa powinien działać niezależnie od układów sterowania i alarmowego, tak aby uszkodzenie tych układów nie mogło uniemożliwić działania układu bezpieczeństwa.

16.4.2.5 Układ bezpieczeństwa powinien mieć takie właściwości samokontrolne, aby w przypadku zwarcia, dozjera, zadziałania bezpiecznika lub przewodzącego obwodu nastąpiło nadanie sygnału alarmowego.
16.4.2.6 Układy bezpieczeństwa poszczególnych urządzeń lub mechanizmów maszynowni powinny być od siebie niezależne. Uszkodzenie jednego urządzenia lub zespołu urządzeń maszynowni nie powinno wpływać na działanie układów bezpieczeństwa innych urządzeń.

16.4.2.7 W przypadku układu napędowego wielosilnikowego i wielośrubowego, zadziałanie układu bezpieczeństwa przy spadku ciśnienia w instalacji oleju smarowego jednego silnika, nie powinno wpływać na pracę pozostałych silników.

16.4.2.8 Układ bezpieczeństwa powinien działać po zadziałaniu układu alarmowego w odpowiedniej sekwencji realizowanych funkcji.

16.4.2.9 Zadziałanie układu bezpieczeństwa powinno wywołać sygnał alarmowy.

16.4.2.10 Układ bezpieczeństwa powinien być zbudowany tak, aby jego uszkodzenia nie prowadziły do stanów niebezpiecznych. Właściwość ta powinna być zachowana z uwzględnieniem nie tylko bezpieczeństwa samego układu iłączanego z nim urządzenia, lecz i bezpieczeństwa maszynowni oraz statku.

16.4.2.11 Jeżeli nastąpiło zatrzymanie urządzenia przez układ bezpieczeństwa, to jego ponowne uruchomienie nie powinno następować automatycznie, lecz po uprzednim ręcznym odblokowaniu (patrz też 15.2.3.7).

16.4.2.12 Jeżeli przewiduje się możliwość wyłączania układu bezpieczeństwa napędu głównego, to urządzenie wyłączające powinno być wykonane w taki sposób, aby niemożliwe było niezamierzone użycie i aby w przypadku wyłączenia układu bezpieczeństwa stan ten był wskazywany specjalnym sygnałem.

16.4.2.13 W układach napędowych ze śrubami o skoku nastawnym, należy przewidzieć zabezpieczenie przed przeciwwieściem silnika przy ustawieniu skoku śruby.

16.5 Układy sterowania

16.5.1 Układ sterowania napędem głównym

16.5.1.1 Silnik główny powinien być wyposażony w system awaryjnego zatrzymywania zainstalowany w sterówce, niezależnie od układu zdalnego sterowania.

16.5.1.2 Każde stanowisko zdalnego lub automatycznego sterowania napędem głównym powinno być wyposażone w następujące przyrządy kontrolne i urządzenie:

- wskaźniki układu alarmowego dobrane z uwzględnieniem roli danego stanowiska oraz przewidywanej formy bezpośredniego nadzoru nad pracą urządzeń maszynowych, a w szczególności wskaźniki informujące o stanach wpływających na zdolności manewrowe statku;
- wskaźniki informujące, z jakiego stanowiska odbywa się sterowanie;
- urządzenie do wyłączania układu bezpieczeństwa silnika głównego;
- wskaźnik ciśnienia powietrza rozruchowego;
- wskaźniki liczby i kierunku obrotów wału śrubowego oraz wskaźniki liczby obrotów silnika – w przypadku zastosowania sprzęgła rozłącznego dla silników napędu głównego, których moc wynosi 75 kW i więcej;
- wskaźnik położenia skrzydeł śruby o skoku nastawnym;
- urządzenie do awaryjnego zatrzymywania silnika głównego wymagane w 15.5.1.1.

16.5.1.3 Zmniejszenie ciśnienia powietrza rozruchowego silnika głównego poniżej dopuszczalnej wartości powinno powodować zadziałanie sygnalizacji optycznej.

16.5.1.4 Układ zdalnego sterowania powinien być tak wykonany, aby w przypadku jego awarii został podany sygnał alarmowy, a prędkość obrotowa i kierunek naporu śruby napędowej pozostały niezmiennione aż do chwili przejęcia sterowania przez inne stanowisko.
16.5.1.5 W przypadku istnienia kilku stanowisk sterowania napędem głównym należy wykluczyć możliwość równoczesnego sterowania z różnych stanowisk. Jedno z tych stanowisk powinno być nadzwyczajne w stosunku do pozostałych.

16.5.1.6 Przełączanie stanowisk sterowania między sterówką a maszynownią powinno być możliwe tylko ze sterówki.

16.5.1.7 Nadrzędne stanowisko sterowania powinno mieć możliwość przejęcia sterowania o każdym czasie, a także możliwość kontroli parametrów pracy układu napędowego i instalacji związanych, niezależnie od tego, skąd się odbywa sterowanie. Przejęcie sterowania przez stanowisko nadrzędne powinno być sygnalizowane przynajmniej na poprzednio czynnym stanowisku sterowania.

16.5.1.8 Przełączeniu sterowania ze stanowiska na stanowisko powinien towarzyszyć sygnał dźwiękowy i świetlny na obu stanowiskach.

Zaleca się, aby czas przełączenia sterowania na poszczególne stanowiska sterowania, w tym i na lokalne, nie przekraczał 10 sekund.

16.5.1.9 Układ sterowania powinien być tak wykonany, aby sterowanie z nowego stanowiska było możliwe dopiero po potwierdzeniu przez to stanowisko, w określonej formie, przejęcia sterowania.

Przełączenie sterowania ze stanowiska na stanowisko nie powinno powodować konieczności zatrzymywania silnika głównego.

16.5.1.10 W przypadku sterowania układem napędowym ze sterowni statku, czynności sterownicze stąd wykonywane powinny ograniczyć się do prostych ruchów, a sygnał sterujący powinien być zadowalający w zasadzie za pomocą pojedynczych elementów sterowniczych (dźwigni, pokrętł etp.). W układach napędowych ze śrubą o skośnym napinaniu lub z przekładnią nawrotową może być stosowany system z dwoma elementami sterowniczymi, przy czym układ sterowania powinien być tak wykonany, aby błędy manewru nie spowodowały zatrzymywania silnika.

16.5.1.11 Układ automatycznego lub zdalnego sterowania powinien być tak wykonany, aby w przypadku szybkiego następowania po sobie zadawanych rozkazów, zawsze został wykonany ostatni. Przeprowadzanie zadanego rozkazu powinien być niezależny od prędkości przemieszczania elementu sterowniczego.

16.5.1.12 W przypadku układu napędowego wielosilnikowego każdy silnik lub zespół tych silników pracujący na jedną śrubę napędową powinien mieć niezależny układ zdalnego sterowania.

16.5.1.13 Zaleca się także wykonanie układu zdalnego sterowania dwoma lub większą liczbą silników napędu głównego pracujących na jedną śrubę napędową, aby wyrównanie obciążeń pracujących silników następowało automatycznie.

16.5.1.14 Jeżeli nie przewidziano środków ograniczających do wartości nominalnej moment obrotowy silnika napędu głównego, to jej przekroczenie powinno być sygnalizowane na każdym stanowisku sterowania.

16.5.1.15 Zaleca się także wykonanie układu automatycznego lub zdalnego sterowania silnikiem napędu głównego, aby można było wykluczyć ciągłą pracę silnika w określonym zakresie obrotów, jeżeli konieczność taka wynikała np. ze względu na drgania skrótne.

16.5.1.16 Układ automatycznego lub zdalnego sterowania silnikiem napędu głównego powinien tak ograniczać liczbę wykonywanych rozruchów (przerzutów) ponownych w przypadku nieudanego pierwszego rozruchu (przerzutowania) automatycznego lub zdalnego, aby pozostały zapas powietrza w zbiornikach rozruchowych lub energii elektrycznej w akumulatorach był wystarczający do wykonania z lokalnego stanowiska sterowania co najmniej trzech rozruchów silnika.

16.5.1.17 Nieuruchomienie silnika napędu głównego po wykonaniu ponownych rozruchów (przerzutów) automatycznych powinno być sygnalizowane na stanowisku sterowania.
16.5.2 Układy sterowania źródłami i rozdziałem energii elektrycznej

16.5.2.1 Przy zastosowaniu układu automatyki zespołów prądotwórczych, w którym uruchomienie zespołu rezerwowego następuje po zaniku lub spadku napięcia na szynach rozdzielnicy głównej, przerwa w zasilaniu sieci nie powinna przekraczać 45 sekund. W takim przypadku ponowny rozruch mechanizmów ważnych, niezbędnych do manewrowania statkiem, które pracowały przed zanikiem mocy, powinien odbywać się automatycznie i w kolejności zaprogramowanej.

16.5.2.2 Układ automatycznego sterowania zespołami prądotwórczymi powinien mieć blokadę uniemożliwiającą automatyczne załączenie zespołu do sieci w przypadku zaistnienia zwarcia na szynach rozdzielniczej głównej.

16.5.2.3 W przypadku nieudanego pierwszego rozruchu, automatycznego lub zdalnego, silnika spalinowego zespołu prądotwórczego, układ sterowania powinien tak ograniczyć liczbę automatycznie wykonywanych rozruchów ponownych tego samego silnika lub silników napędowych pozostałych zespołów, aby pozostały w zbiornikach rozruchowych zapas powietrza lub – przy rozruchu elektrycznym – zapas energii elektrycznej w baterii akumulatorów był wystarczający do wykonania ze stanowiska sterowania lokalnego co najmniej trzech rozruchów jednego z zespołów prądotwórczych.

16.5.2.4 Nieruchomienie zespołu powinno być sygnalizowane przez układ alarmowy.

16.5.3 Układy sterowania instalacjami rurociągów

16.5.3.1 Armatura instalacji rurociągów sterowana zdalnie lub automatycznie przy użyciu energii pomocniczej powinna mieć konstrukcję umożliwiającą również sterowanie ręczne.

16.5.3.2 Armaturę wymienioną w 15.5.3.1 należy usytuować w miejscach dostępnych (do obsługi ręcznej) we wszystkich normalnych warunkach eksploatacji.

16.5.3.3 Układ sterowania tymi instalacjami rurociągów, które przewidziane są do wykorzystania w różnych celach na przemian (np. balast i transport paliwa) powinien mieć takie blokady iabezpieczenia, aby spełnione były odpowiednie wymagania dotyczące wzajemnego połączenia tych instalacji w części VI – Urządzenia maszynowe i instalacje rurociągów.

16.5.3.4 Jeżeli do sterowania zaworami odlotowymi ze zbiorników rozchodowych paliwa używa się energii pomocniczej (pneumatycznej, elektrycznej itp.), to zawory te powinny być takiej konstrukcji, aby pozostały w stanie otwartym w przypadku braku wspomnianej energii oraz aby istniała możliwość ich zdalnego zamknięcia, za pomocą normalnie do tego celu, przewidzianych środków, z miejsca znajdującego się poza maszynownią.

16.5.3.5 Jeżeli zbiorniki paliwa wyposażone są w układ napełniania z automatycznym odcięciem dopływu paliwa, to należy przewidzieć czujnik wysokiego poziomu, uruchamiający urządzenie zabezpieczające przed przelaniem, najpóźniej w momencie osiągnięcia 97% napełnienia. Układ zdalnego sterowania napełnianiem, jeżeli jest zastosowany, powinien dodatkowo spełniać wymagania podane w 16.2.4.3.

16.5.4 Układ sterowania sterem strumieniowym

16.5.4.1 Urządzenia sterujące dziobowego steru strumieniowego powinny być zainstalowane na stałe w sterówce. Jeżeli zastosowano przenośne urządzenia do zdalnego sterowania, to należy zapewnić układ, który umożliwi w każdej chwili przejęcie sterowania ze sterówki.

16.6 Zalecenia dodatkowe dotyczące zakresu automatyzacji

16.6.1 Postanowienia ogólne i zakres zastosowania

16.6.1.1 Postanowienia niniejszego rozdziału sformułowano zakładając, że statki śródlądowe eksploatowane są w zasadzie bez stałej wachty w maszynowni, a obecność personelu w tym pomieszczeniu wy
nika z konieczności przeprowadzenia okresowych czynności obsługowych, regulacyjnych i drobnych napraw.

16.6.1.2 Zakres automatyzacji, wynikający z postanowień niniejszego podrozdziału, jest zalecany dla formy nadzoru nad pracą urządzeń maszynowych określonej w 15.6.1.1 i nie jest związany z uzyskaniem dodatkowego znaku w symbolu klasy statku.

16.6.2 Układy kontrolne

16.6.2.1 Zaleca się, aby zakres i sposób działania układów kontrolnych był zgodny z tabelą 15.6.2.1, przy czym sygnalizacja alarmowa wymagana w 15.4.1.14 jest obligatoryjna.

Stosowanie podanego w tabeli 15.6.2.1 automatycznego przełączania mechanizmów dublowujących jest celowe, jeżeli od pracy tych mechanizmów zależy zachowanie zdolności manewrowych statku.

Tabela 15.6.2.1

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Mechanizm, instalacja lub urządzenie</th>
<th>Parametry</th>
<th>Układ alarmowy – sygnalizowana wartość parametru</th>
<th>Układ bezpieczeństwa</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Układ napędowy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Główny silnik spalinowy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>Instalacja oleju smarowego</td>
<td>ciśnienie na wlocie do silnika (za filtrem)</td>
<td>minimalna</td>
<td>pierwszy stopień: włączenie pompy rezerwowej</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>temperatura na wlocie do silnika</td>
<td>maksymalna</td>
<td>drugi stopień: zatrzymanie silnika</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>poziom w zbiorniku obiegowym</td>
<td>minimalna</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1.1.2</td>
<td>Instalacja chłodząca</td>
<td>temperatura wody chłodzącej na odlocie z silnika</td>
<td>maksymalna</td>
<td>–</td>
<td>na kolektorze odlotowym za cylindrami</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ciśnienie lub przepływ wody chłodzącej na wlocie</td>
<td>minimalna</td>
<td>włączenie pompy rezerwowej</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>poziom w zbiornikach wyrównawczych</td>
<td>minimalna</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1.1.3</td>
<td>Instalacja paliwowa</td>
<td>poziom w zbiornikach rozchodowych</td>
<td>minimalna</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1.1.4</td>
<td>Układ wydechowy</td>
<td>temperatura gazów wydechowych</td>
<td>maksymalna</td>
<td>redukcja obciążenia *</td>
<td>na kolektorze wydechowym za cylindrami</td>
</tr>
<tr>
<td>1.2</td>
<td>Przekładnia główna</td>
<td>ciśnienie oleju smarowego na wlocie</td>
<td>minimalna</td>
<td>włączenie pompy rezerwowej</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>temperatura oleju smarowego na wlocie</td>
<td>maksymalna</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Wały napędowe</td>
<td>temperatura lożyska oporowego</td>
<td>maksymalna</td>
<td>–</td>
<td>tylko w przypadku gdy sprzęgło ma oddzielny obieg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ciśnienie oleju w sprzęcie hydraulicznym</td>
<td>minimalna</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>poziom w zbiorniku grawitacyjnym oleju smarowania pochwy wału śrubowego</td>
<td>minimalna</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ciśnienie oleju w systemie przestawiania skrzydeł śruby nastawnej</td>
<td>minimalna</td>
<td>włączenie pompy rezerwowej</td>
<td></td>
</tr>
<tr>
<td>Lp.</td>
<td>Mechanizm, instalacja lub urządzenie</td>
<td>Parametry</td>
<td>Układ alarmowy – sygnalizowana wartość parametru</td>
<td>Układ bezpieczeństwa</td>
<td>Uwagi</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>2</td>
<td>Instalacja elektryczna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Rozdzielnice główne</td>
<td>– oporność izolacji</td>
<td>minimalna</td>
<td>zatrzymanie silnika</td>
<td>–</td>
</tr>
<tr>
<td>2.2</td>
<td>Silniki spalinowe napędu prądnic</td>
<td>– ciśnienie oleju smarowego na wlocie</td>
<td>minimalna</td>
<td>–</td>
<td>oddzielny sygnał alarmowy w sterowci</td>
</tr>
</tbody>
</table>

* Funkcja układu bezpieczeństwa może być wykonana przez obsługującego w oparciu o odpowiedni sygnał alarmowy.

16.6.2.2 Jeżeli przewiduje się możliwość okresowego odłączania układu alarmowego w maszynowni, to stan ten powinien być wskazywany w sterówce.

16.6.2.3 Jeżeli przewiduje się usytuowanie repetytorów układu alarmowego w rejonie pomieszczeń mieszkalnych załogi, to zaleca się takie wykonanie instalacji, aby wyłączenie sygnału alarmowego w pomieszczeniu (potwierdzenie przyjęcia sygnału) wskazywane było również w sterówce.

16.6.3 Układy sterowania

16.6.3.1 Zaleca się zastosowanie układów automatycznego sterowania temperaturą w następujących instalacjach:
- oleju smarowego silników głównych,
- wody chłodzącej silników głównych,
- oleju smarowego przekładni głównej.

Układ sterowania temperaturą powinien być tak dobrany, aby pozwalał na utrzymanie temperatury czynnika we właściwych granicach, również w czasie wykonywania manewrów.

16.6.3.2 Jeżeli do rozruchu silnika głównego stosowane jest sprężone powietrze, to zaleca się zastosowanie układu automatycznego sterowania sprężarek, pozwalającego na utrzymanie niezbędnego ciśnienia w zbiornikach.

16.6.3.3 W przypadku, gdy zbiornik rozchódowy paliwa dopelniany jest pompą z napędem mechanicznym, zaleca się zastosowanie układu automatycznego sterowania pompą podającą, tak aby ciągłość zasilania paliwem mogła być zapewniona bez konieczności interwencji obsługi.

16.6.3.4 Układy sterowania omówione w 15.6.3.2 i 15.6.3.3 powinny obejmować nie tylko mechaniczny danej instalacji, ale również, w niezbędnym zakresie, armaturę tej instalacji.

16.6.3.5 Zaleca się stosowanie automatycznego lub zdalnego załączania dodatkowego źródła energii elektrycznej, przewidzianego w 3.1.11.

16.6.3.6 Wymagania dotyczące wyposażenia silników spalinowych w osłony przewodów paliwowych wysokiego ciśnienia zawarte są w Części VI – Urządzenia maszynowe i instalacje rurociągów.

17 WYMAGANIA DLA UZYSKANIA DODatkowego ZNAKu SYMBoLU KLasy

Wymagania zawarte w niniejszym rozdziale są wymaganiami uzupełniającymi do podanych w innych rozdziałach niniejszej części Przepisów, dla nadania znaków dodatkowych w symbolu klasy.
Określenia poszczególnych znaków patrz Część I – Zasady klasyfikacji.

17.1 Statki pasażerskie – znak: pas

17.1.1 Postanowienia ogólne

Wymagania podrozdziału 16.1 mają zastosowanie do wyposażenia elektrycznego statków pasażerskich.

Zwolnienia od wymagań podrozdziału 16.1 mogą być udzielone promom pasażerskim i statkom pasażerskim uprawiającym żeglugę w porze dziennej w ograniczonym rejonie pływania, określonym w świadectwie klasy.

17.1.2 Podstawowe źródło energii elektrycznej

17.1.2.1 Dla statków pasażerskich kabinowych (z sypialnymi kabinami pasażerskimi) należy przewidzieć co najmniej dwa zespoły prądotwórcze. Moc poszczególnych zespołów należy tak dobrać, aby po wypadnięciu z pracy jednego z nich pozostałe zapewniały zasilanie ważnych urządzeń elektrycznych, w warunkach podanych w 3.1.3. Jeden z zespołów prądotwórczych powinien być niezależny od napędu głównego.

17.1.2.2 Źródła energii elektrycznej wymagane w 3.1.1 i 3.1.11 powinny być od siebie niezależne.

17.1.3 Awaryjne źródło energii elektrycznej

17.1.3.1 Należy przewidzieć awaryjne źródło energii elektrycznej, niezależne od źródeł wymienionych w 3.1.1 i 3.1.11. Takim awaryjnym źródłem energii elektrycznej może być:

− zespół prądotwórczy wyposażony we własną instalację paliwową i własny system chłodzenia, uruchamiający się automatycznie i włączający się do sieci po zaniku napięcia na szybach rozdzielniczy głównej; łączny czas rozruchu i przejęcia obciążenia nie może przekraczać 30 sekund.

PRS może zezwolić na ręczne uruchamianie zespołu prądotwórczego, jeśli jest on zainstalowany w pobliżu stanowiska sterowania o stałej obsłudze i znajduje się na zewnątrz pomieszczeń maszynowych;

− bateria akumulatorów przejmująca automatycznie zasilanie w przypadku zaniku napięcia w sieci podstawowej na czas określony w 9.1.3, bez potrzeby jej doładowywania, przy czym spadek napięcia nie może być większy niż dopuszczalny, oraz mająca układ ładowania pozwalający na załączanie się baterii do sieci awaryjnej również w przypadku, gdy bateria ta jest w stanie ładowania.

PRS może zezwolić na ręczny włączanie baterii akumulatorów ze stanowiska o stałej obsłudze, które znajduje się poza pomieszczeniami maszynowymi.

17.1.3.2 Z awaryjnego źródła energii elektrycznej powinny być zasilane następujące odbiorniki, o ile nie posiadają one własnego niezależnego awaryjnego źródła energii:

.1 oświetlenie awaryjne:

− miejsc, w których przechowywane są środki ratunkowe i w których są one zwyczajowo przygotowywane do użycia;

− oznakowań dróg i wyjść ewakuacyjnych, w tym system oświetlenia dolnego wymaganego w 16.1.6, jeżeli zasilany jest energią elektryczną;

− dróg ewakuacji, wyjść na pokład otwarty i z miejsc, w których mogą się gromadzić pasażerowie i załoga, korytarze, schody i windy;

− pomieszczeń maszynowych, pomieszczeń urządzenia sterowego i stanowisk sterowania oraz wyjść z nich;

− sterówk;

− pomieszczenia awaryjnego źródła energii elektrycznej;

− miejsc składowania sprzętu pożarniczego oraz miejsc obsługi instalacji gaśniczych i miejsc usytuowania przycisków ręcznej sygnalizacji pożarowej;

− pomieszczeń, w których pasażerowie i załoga zbierają się w razie zagrożenia;

− innych obszarów przeznaczonych dla osób z ograniczonymi możliwościami ruchowymi;
.3 szperacze;
.4 instalacje sygnalizacji dźwiękowej (tyfon);
.5 awaryjne wyposażenie radiowe;
.6 środki łączności wewnętrznej, rozgłośnia dyspozycyjno-manewrowa i sygnalizacja alarmu ogólnego;
.7 instalacja alarmowa;
.8 instalacja wykrywacza pożaru;
.9 instalacja tryskacza i inne instalacje, których praca będzie uznana przez PRS za niezbędną do zapewnienia bezpieczeństwa statku i znajdujących się na nim ludzi;
.10 windy i ruchome urządzenia komunikacyjne dla osób z dysfunkcjami zarządu ruchu.

17.1.3.3 Moc awaryjnego źródła energii elektrycznej powinna być wystarczająca dla zasilania wszystkich urządzeń elektrycznych ważnych z punktu widzenia bezpieczeństwa osób znajdujących się na statku, przy uwzględnieniu odbiorników pracujących jednocześnie, przez czas uzależniony od przeznaczenia statku pasażerskiego, lecz nie krótszy niż 30 minut.

17.1.3.4 Należy przewidzieć środki umożliwiające sprawdzanie wszystkich urządzeń awaryjnych, łącznie z urządzeniami automatycznego rozruchu.

17.1.3.5 Jako urządzenia rozruchowe awaryjnych zespołów prądotwórczych mogą być stosowane:
.1 elektryczny układ rozruchowy z własną baterią akumulatorów i układem ładowania;
.2 układ sprężonego powietrza z własnymi niezależnymi zbiornikami powietrza;
.3 hydrauliczny układ rozruchowy;
.4 ręczne urządzenie rozruchowe.

17.1.4 Pomieszczenia awaryjnych źródeł energii elektrycznej

17.1.4.1 Źródła awaryjne i rozdzielnica awaryjna powinny być zainstalowane za grodzią zderzeniową, ale poza przedziałem maszynowym i pomieszczeniem, w którym znajduje się główne i dodatkowe źródło energii elektrycznej. Pomieszczenie, w którym znajduje się źródło awaryjne oraz rozdzielnica awaryjna powinno być oddzielone od pomieszczeń, w których znajdują się główne i dodatkowe źródła energetyczne wraz z ich rozdzielnicami, przegrodą pożarową klasy A60.

17.1.4.2 Pomieszczenie awaryjnego źródła energii elektrycznej powinno znajdować się powyżej połaci otwartego lub tak daleko, jak to możliwe, od źródeł energii elektrycznej wymaganej w 3.1.1 i 3.1.11, aby w przypadku zalania pomieszczenie to nie zostało zalane w tym samym czasie, co pomieszczenie źródła podstawowego i dodatkowego.

17.1.4.3 Rozdzielnica awaryjna powinna być zainstalowana możliwie blisko awaryjnego źródła energii elektrycznej.

17.1.4.4 Jeżeli awaryjnym źródłem energii elektrycznej jest prądnica z niezależnym napędem, to zaleca się, aby rozdzielnica awaryjna umieszczona była w tym samym pomieszczeniu.

17.1.4.5 Pomieszczenie awaryjnego zespołu prądotwórczego powinno być ogrzewane w celu zapewnienia temperatury wymaganej dla jego prawidłowego działania oraz odpowiednio wentylowane, zgodnie z wymaganiami podanymi w Części VI – Urządzenia maszynowe i instalacje rurociągów.

17.1.4.6 Jeżeli awaryjnym źródłem energii jest bateria akumulatorów, to oddzielne pomieszczenie baterii akumulatorów powinno odpowiadać wymaganiom zawartym w 11.2 i 11.3.

17.1.5 Zasilanie

17.1.5.1 Rozdzielnica awaryjna powinna być zasilana z rozdzielnicy głównej. Obwód zasilający powinien być zabezpieczony przed skutkami zwarć i przeciążeń w rozdzielnicy głównej. Gdy przewidziana jest również możliwość zasilania rozdzielnicy głównej z rozdzielnicy awaryjnej, to taki obwód powinien być zabezpieczony w rozdzielnicy awaryjnej co najmniej przed skutkami zwarć.
17.1.5.2 Kable zasilające urządzenia z rozdzielnicy awaryjnej powinny być prowadzone w sposób zapewniający ciągłość zasilania w przypadku pożaru lub zalania maszynowni. Nie powinny przechodzić przez maszynownie, kuchnie lub pomieszczenia, gdzie zainstalowano główne źródła energii elektrycznej, chyba że zasilają urządzenia awaryjne umieszczone w tych pomieszczeniach. Kable te nie powinny być wówczas prowadzone nad silnikami spalinowymi, urządzeniami opalającymi olejem, gorącymi powierzchniami przewodów wydechowych ani w małej odległości od nich. Przy braku możliwości ominięcia tych miejsc, kable należy odpowiednio zabezpieczyć przed skutkami nadmiernego ciepła i ognia.

17.1.5.3 Kable zasilające urządzenia z rozdzielnicy awaryjnej powinny być prowadzone w taki sposób, aby wzrost temperatury grodzi lub pokładu w wyniku pożaru w sąsiednim pomieszczeniu nie powodował utraty ich zdolności zasilania.

17.1.5.4 Kable głównego i awaryjnego zasilania, przechodzące przez jakiejkolwiek rejon oddzielony przegrodami pożarowymi, powinny być możliwe jak najbardziej oddzielone od siebie w kierunku poziomym i pionowym, a jeżeli nie jest to możliwe, należy zastosować kabel ognioodporny, zasilający urządzenia awaryjne.

17.1.5.5 Kable układane w wiązkach powinny spełniać wymagania Publikacji IEC 332-3 lub równoważne, uznane przez Administrację, dotyczące odporności wiązek kabli na rozprzestrzenianie płomieni. Innym rozwiązaniem może być wprowadzenie przegród na długich odcinkach wiązek kabli (powyżej 6 m w pionie i 14 m w poziomie), chyba że kable są całkowicie zamknięte w kanałach.

17.1.6 Dodatkowe oświetlenie dolne

17.1.6.1 W celu zapewnienia wyraźnej identyfikacji dróg ewakuacji i wyjść ewakuacyjnych, kiedy skuteczność standardowego oświetlenia awaryjnego może być mniejsza z powodu obecności dymu, należy przewidzieć system dodatkowego oświetlenia dolnego, działający przez co najmniej 30 minut od momentu uruchomienia.

17.1.6.2 Szczegółowe wymagania dla systemu oświetlenia dolnego, który może być wykonany z materiałów fotoluminescencyjnych lub ze źródeł światła zasilanych energią elektryczną, podano w punkcie 4.2 z Części V – Ochrona przeciwpożarowa.

17.1.6.3 Materiały fotoluminescencyjne i źródła światła zasilane energią elektryczną powinny być typu uznanego przez PRS lub inną instytucję uznaną przez UE.

17.1.7 Sygnalizacja alarmowa i łączność

17.1.7.1 Należy stosować dwa oddzielne systemy sygnalizacji alarmowej: dla pasażerów i dla załogi. Na statkach z instalacją małej mocy dopuszcza się stosowanie jednego wspólnego systemu sygnalizacji alarmowej.

17.1.7.2 Sygnalizacja alarmowa umożliwiająca zaalarmowanie pasażerów powinna być słyszalna we wszystkich pomieszczeniach dostępnych dla pasażerów i powinna być uruchamiana ze sterówki oraz z miejsca stałej wachty.

17.1.7.3 Sygnalizacja alarmowa dla załogi, spełniająca wymaganie podrozdziału 7.3, powinna obejmować swym zasięgiem również pomieszczenia personelu pokładowego oraz chłodnie i inne magazyny.

17.1.7.4 W kabinach pasażerskich i w pomieszczeniach dostępnych dla pasażerów, a nie będących pod stałym nadzorem załogi, w kuchni i w innych pomieszczeniach zagrożonych pożarem należy zainstalaować uznanym przez PRS system wykrywaczy pożaru, spełniający wymagania podane w 7.4.
17.1.7.5 Dodatkowo, w celu zaalarmowania załogi statku należy przewidzieć ręczne przyciski alarmowe w następujących miejscach:
- kabinach,
- korytarzach i klatkach schodowych, zachowując odległość do najbliższego przycisku nie większą niż 10 m, przy czym na każdy przedział wodoszczelny musi przypadać co najmniej jeden przycisk,
- windach osobowych,
- pomieszczeniach restauracyjnych i rekreacyjnych, salonach,
- kuchniach, przedziałach maszynowych i pomieszczeniach o podobnym zagrożeniu pożarem,
- toaletach przeznaczonych dla osób z dysfunkcją narządu ruchu,
- chłodniach i innych magazynach.

Sygnał alarmowy pochodzący z ręcznych przycisków powinien być aktywowany w pomieszczeniu wachtowym w sterówce lub w pomieszczeniu osoby odpowiedzialnej i tylko w tych miejscach może być wyłączany. Przyciski alarmowe powinny być zainstalowane na wysokości od 0,85 m do 1,10 m nad podłogą.

17.1.7.6 Przyciski i łączniki alarmowe powinny być zabezpieczone przed niezamierzonym użyciem.

17.1.7.7 Obok łączności wymaganej w 7.2 należy przewidzieć łączność rozmówczą między sterówką a pomieszczeniami użytkowymi ogólnego przeznaczenia i – jeżeli nie ma bezpośredniej komunikacji ze sterówką – miejscami ewakuacji pasażerów.

17.1.7.8 Należy przewidzieć rozgłośnię dyspozycyjną dla podawania komunikatów podczas alarmu ogólnego, słyszalną dla wszystkich pasażerów. Tam, gdzie możliwa jest komunikacja głosowa między sterówką a obszarem dla pasażerów, instalowanie głośników rozgłośni nie jest konieczne.

17.1.7.9 Każdy przedział wodoszczelny powinien być wyposażony w alarm wysokiego poziomu w żezach.

17.1.7.10 Na statkach pasażerskich zbudowanych lub przebudowanych przed 31.12.2005 r. o długości nieprzekraczającej 24 m, uprawiających jedynie żeglugę krajową polegającą na krótkich rejsach wyjazdowych w porze dziennej i posiadających dodatkowy znak klasy pas B, pas C lub pas D rozgłośnia dyspozycyjna nie musi spełniać wymagań 22.1.5.4.1 z Części VIII – Instalacje elektryczne i systemy sterowania.

17.1.8 Dodatkowe wymagania dla pomieszczeń przeznaczonych dla osób o ograniczoną możliwości przemieszczania się

17.1.8.1 W pomieszczeniach, w których osoby o ograniczoną możliwością przemieszczania się nie są widoczne dla członków załogi, personelu pokładowego lub innych pasażerów, należy zapewnić możliwość uruchomienia alarmu. Dotyczy to również toalet przeznaczonych dla tych osób.

17.1.8.2 Dla osób z niepełnosprawnością wzrokową lub słuchową należy przewidzieć alarmową sygnalizację optyczną i dźwiękową.

17.1.8.3 W miejscach przeznaczonych dla osób niedowidzących należy przewidzieć oświetlenie zapewniające odpowiednio wyższy poziom natężenia oświetlenia niż dla pozostałych pasażerów.

17.2 Zbiornikowce do przewozu materiałów niebezpiecznych – znaki: zb ADN-C, zb ADN-G, zb ADN-N

17.2.1 Dokumenty dotyczące instalacji elektrycznych

17.2.1.1 Na statku powinny znajdować się następujące dokumenty:
- rysunek przedstawiający granice przestrzeni ładunkowej i rozmieszczenie urządzeń elektrycznych zainstalowanych w tej przestrzeni;
- lista urządzeń elektrycznych zainstalowanych w przestrzeni ładunkowej zawierająca następujące dane: rodzaj maszyny lub urządzenia, lokalizacja, typ ochrony, typ ochrony przeciwbrychowego, organ inspekcji, numer dopuszczenia do eksploatacji;
– lista (lub plan ogólny) wskazująca urządzenia elektryczne znajdujące się poza przestrzenią ładunkową, które mogą być uruchamiane podczas załadunku, rozładunku i odgazowania. Powyżej wymienione dokumenty powinny nosić pieczęć kompetentnego organu, wydającego świadectwo dopuszczenia do eksploatacji.

17.2.2 Instalacje elektryczne

17.2.2.1 Dozwolone jest stosowanie wyłącznie instalacji izolowanych rozdziału energii elektrycznej niewykorzystujących kadłuba statku jako przewodu powrotnego.

Postanowienie to nie dotyczy:
– instalacji lokalnych znajdujących się poza przestrzenią ładunkową (np. połączeń rozruszników silników spalinowych);
– urządzeń służących do sprawdzania stanu izolacji, o których mowa w 4.5.4.8.

17.2.2.2 Przy doborze urządzeń elektrycznych przeznaczonych do pracy w przestrzeniach zagrożonych wybuchem, należy brać pod uwagę grupy wybuchowości i klasy temperaturowe przypisane do tych materiałów, których przewóz jest przewidywany – patrz ADN – Wykaz materiałów niebezpiecznych.

17.2.3 Typy urządzeń elektrycznych i ich rozmieszczenie

17.2.3.1 W zbiornikach ładunkowych, zbiornikach resztkowych i rurociągach ładunkowych (odpowiadających strefie 0) można instalować wyłącznie urządzenia pomiarowe, regulacyjne i alarmowe posiadające ochronę typu EEx (ia).

17.2.3.2 W koferdamach, przestrzeniach podwójnej burty, dna podwójnego i ładowniach (odpowiadających strefie 1) można instalować wyłącznie niżej wymienione urządzenia:
– atestowane urządzenia pomiarowe, regulacyjne i alarmowe;
– urządzenia oświetleniowe w osłonach ognioszczelnych lub w osłonach gazowych z nadciśnieniem;
– hermetycznie zamknięte echosondy z przewodami umieszczonymi w grubościennych rurach stalowych, z gazoszczelnymi połączeniami prowadzącymi na pokład główny;
– kable aktywnej ochrony katodowej kadłuba statku, ułożone w ochronnych rurach stalowych, takich jakie są stosowane w echosondach.

17.2.3.3 W pomieszczeniach służbowych w przestrzeni ładunkowej (odpowiadających strefie 1) pod pokładem można instalować wyłącznie wymienione poniżej urządzenia:
– atestowane urządzenia pomiarowe, regulacyjne i alarmowe;
– urządzenia oświetleniowe w osłonach ognioszczelnych lub w osłonach gazowych z nadciśnieniem;
– silniki napędzające niezbędne urządzenia, takie jak pompy balastowe; silniki te powinny być typu atestowanego.

17.2.3.4 Akumulatory należy ulokować poza przestrzenią ładunkową.

17.2.3.5 Urządzenia elektryczne wykorzystywane podczas załadunku, rozładunku i odgazowania statku i w czasie cumowania, znajdujące się poza przestrzenią ładunkową (odpowiadające strefie 2) powinny być co najmniej typu o ograniczonym zagrożeniu wybuchem.

Postanowienie to nie dotyczy:
– instalacji oświetleniowych w pomieszczeniach mieszkalnych, z wyjątkiem przełączników znajdujących się w pobliżu wejścia do pomieszczeń mieszkalnych;
– instalacji radiotelefonicznej w pomieszczeniach mieszkalnych lub w sterówce;
– instalacji elektrycznych w pomieszczeniach mieszkalnych, w sterówce i w pomieszczeniach służbowych poza przestrzenią ładunkową, pod warunkiem, że:
 .1 pompomieszczenia te są wyposażone w instalację wentylacyjną zapewniającą nadciśnienie 0,1 kPa (1 mbar) i niemożliwe jest otwarcie któregokolwiek z okien w tych pomieszczeniach; otwory wlotowe instalacji wentylacyjnej powinny być umieszczone możliwie jak najdalej, jednak nie mniej niż 6 m od przestrzeni ładunkowej i nie mniej niż 2 m nad pokładem.
 .2 pompomieszczenia są wyposażone w instalację wykrywania gazów z czujnikami:
– przy wlotowych otworach ssących instalacji wentylacyjnej;
– bezpośrednio przy górnej krawędzi progów drzwi wejściowych do pomieszczeń mieszkalnych i służbowych;

3 pomiar stężenia gazu odbywa się w sposób ciągły;

4 wentylatory wyłączają się w momencie, gdy stężenie gazu osiągnie 20% dolnej granicy wybuchowości. W takim przypadku oraz wówczas, gdy nie będzie utrzymywane nacisnienie, lub gdy nastąpi awaria instalacji wykrywania gazu, instalacje elektryczne nie spełniające wymogów podpunktu 2 powinny zostać wyłączone. Operacje te powinny być wykonane natychmiast, automatycznie i powinno towarzyszyć im włączenie oświetlenia, w pomieszczeniach mieszkalnych, sterówce i pomieszczeniach służbowych. Oświetlenie awaryjne powinno być co najmniej typu o ograniczonym zagrożeniu wybuchem. Wyłączenie powinno być sygnalizowane sygnałami optycznymi i dźwiękowymi w pomieszczeniach mieszkalnych i sterówce.

5 instalacja wentylacyjna, instalacja wykrywania gazu i alarm urządzenia wyłączającego spełniają całkowicie wymagania punktu 16.2.3.1.

6 automatyczne urządzenie wyłączające wentylatory jest tak nastawione, że nie może dojść do jego automatycznego zadziałania podczas rejsu statku.

17.2.3.6 Urządzenia elektryczne nie spełniające wymagań podanych w punkcie 16.2.3.5, a także ich wyłączniki, należy oznakować na czerwono. Odlaczanie takich urządzeń powinno odbywać się z centralnego punktu na pokładzie.

17.2.3.7 Prądnic electriczna, bez przerwy napędzana przez silnik, nie spełniająca wymagań punktu 16.2.3.5, powinna być wyposażona w przełącznik umożliwiający włączenie wzbudzenia prądnicy. Przy przełączniku należy umieścić tabliczkę informacyjną z instrukcją obsługi.

17.2.3.8 Gniazda wtyczkowe przeznaczone do zasilania świateł sygnalizacyjnych i do oświetlenia trapu, powinny być zamontowane na statku w bezpośrednim sąsiedztwie masztu sygnalizacyjnego lub trapu. Przyłączenie i odlaczanie powinno być możliwe tylko w beznapięciowym stanie gniazd.

17.2.3.9 Awaria zasilania urządzeń sterowniczych i zabezpieczających powinna być natychmiast sygnałowana optycznie i akustycznie w miejscach, w których zgrupowane są pozostałe alarmy i pełniona jest wachta (np. sterówka, siłownia, biuro wachtowego).

17.2.3.10 Elektryczne systemy wytwarzania i dystrybucji energii elektrycznej oraz związane z nimi układy sterowania muszą być zaprojektowane w taki sposób, aby pojedyncza awaria tych układów nie powodowała uwolnienia gazu.

17.2.3.11 Instalację oświetleniową w strefach zagrożonych wybuchem należy podzielić na co najmniej dwa obwody. Wszystkie wyłączniki i urządzenia zabezpieczające powinny przerywać wszystkie bieguny i fazy oraz znajdować się w strefie innej niż zagrożona.

17.2.3.12 W systemach magazynowania LNG mogą być montowane silniki z zatapialnymi pompami gazu oraz ich przewody zasilające. Należy zainstalować odpowiednie urządzenia alarmujące o niskim poziomie cieczy i automatycznie wyłączać silniki po wykryciu niskiego poziomu. Automatyczne wyłączenie może nastąpić poprzez wykrycie niskiego ciśnienia tłoczenia pompy, niskiego prądu silnika lub niskiego poziomu cieczy. Wyłączenie takie powinno uruchamiać alarm dźwiękowy i optyczny w sterówce. Powinna istnieć możliwość odlaczenia silników pomp gazowych od zasilania elektrycznego podczas operacji uwolniania gazu.

17.2.3.13 W wymagane systemy wentylacji powinny posiadać co najmniej dwa wentylatory z niezależnym zasilaniem, każdy o wystarczającej wydajności, aby uniknąć gromadzenia się gazu. W przypadku utraty wymaganej wydajności wentylacji w miejscu stałe obsługiwany (np. sterówka) powinien zostać uruchomiony alarm dźwiękowy i optyczny.
17.2.4 Urządzenia awaryjne i kontrolno-pomiaryowe

17.2.4.1 Zbiorniki ładunkowe powinny być wyposażone w następujące urządzenia:
- urządzenie alarmowe wysokiego poziomu cieczy, uruchamiające się najpóźniej w momencie, gdy poziom napelnienia wynosi 86%;
- czujnik wysokiego poziomu, uruchamiający urządzenie zabezpieczające przed przelaniem najpóźniej w momencie osiągnięcia 97,5% napelnienia;
- przyrząd do pomiaru ciśnienia fazy gazowej w zbiorniku ładunkowym;
- przyrząd do pomiaru temperatury ładunku, gdy w wykazie materiałów ADN (załącznik B.2, Dodatek 4, kolumna 8) przewidziane jest zastosowanie instalacji podgrzewania ładunku lub w kolumnie 20 tego wykazu podana jest temperatura maksymalna;
- poziomowskazy.

17.2.4.2 Urządzenie alarmowe wysokiego poziomu cieczy, o którym mowa w 16.2.4.1, powinno w momencie zadziałania uruchamiać optyczny i dźwiękowy sygnał ostrzegawczy na pokładzie.

Urządzenie alarmowe wysokiego poziomu cieczy powinno być niezależne od poziomowskazu.

17.2.4.3 Czujnik wysokiego poziomu, o którym mowa w 16.2.4.1, powinien włączyć alarm optyczny i dźwiękowy na pokładzie i równocześnie uruchomić styk elektryczny, który na położeniu wskaźnika na godzinie 10. Wtyczka powinna być trwale przymocowana do statku, w pobliżu przyłączy dla brzegowych rurociągów załadunkowych i rozładunkowych.

Czujnik wysokiego poziomu powinien ponadto powodować wyłączenie własnych pomp ładunkowych statku, jeżeli napelnianie zbiornika odbywa się z ich udziałem.

Czujnik wysokiego poziomu powinien być niezależny od urządzenia alarmowego wysokiego poziomu cieczy, ale może być połączony z poziomowskazem.

17.2.4.4 Sygnały optyczne i dźwiękowe wywoływane przez urządzenie alarmowe wysokiego poziomu cieczy powinny wyraźnie różnić się od pochodzących z czujnika wysokiego poziomu.

Alarmonympowyinien być widoczny z każdego stanowiska sterowania zaworami odcinającymi zbiorniki ładunkowe.

Czujnik powyższych alarmów może być przyłączony do innej instalacji alarmowej.

17.2.4.5 Gdy ciśnienie lub temperatura przekroczy nastawioną wartość, urządzenia służące do pomiaru ciśnienia i temperatury ładunku powinny włączyć alarm optyczny i dźwiękowy w sterówce i w pomieszczeniach mieszkalnych. Jeżeli ciśnienie przekroczy nastawioną wartość podczas załadunku lub rozładunku, to miernik ciśnienia powinien równocześnie przełączyć styk elektryczny, który, poprzez wtyczkę o której mowa w 16.2.4.3 powoduje rozpoczęcie działań zmierzających do przerwania operacji załadunku. W przypadku korzystania z własnej pokładowej pompy transportowej ładunku powinno nastąpić automatyczne jej wyłączenie.

Przyrząd do pomiaru nadciśnienia lub podciśnienia powinien uruchamiać alarm w momencie osiągnięcia nadciśnienia wynoszącego 1,15 ciśnienia otwartego zaworu nadciśnieniowego, lub gdy podciśnienia osiągniętego 1,1 ciśnienia otwartego zaworu podciśnieniowego. Maksymalna dopuszczalna temperatura jest podana w wykazie materiałów ADN (załącznik B.2, Dodatek 4, kolumna 20). Czujnik powyższych alarmów może być przyłączony do innej instalacji alarmowej.

17.2.4.6 Jeżeli pomiar nadciśnienia lub podciśnienia jest realizowany za pomocą manometru, to średnica jego podziałki powinna być nie mniejsza niż 0,14 m. Wartości maksymalnego, dopuszczalnego nadciśnienia lub podciśnienia należy zaznaczyć czerwonym znakiem. Powinna być zapewniona możliwość ciągłego odczytu wskazań manometrów z miejsca, z którego można przerwać załadunek lub rozładunek.
17.2.4.7 Poziomowskazy, o których mowa w 16.2.4.1 powinny zapewniać możliwość odczytu wskaźań z miejsca sterowania urządzeniami odcinającymi dany zbiornik ładunkowy.

17.2.4.8 Jeżeli elementy sterujące urządzeń odcinających zbiorniki ładunkowe są usytuowane w centrali manewrowo-kontrolnej, to należy w niej zapewnić możliwość odczytu poziomowskazów, o których mowa w 16.2.4.1, a ponadto sygnały optyczne i dźwiękowe wywoływane przez urządzenia alarmowe wysokiego poziomu cieczy, czujniki wysokiego poziomu i przyrządy do pomiaru ciśnienia i temperatury ładunku powinny być wyraźnie widoczne zarówno w centrali, jak i na pokładzie.

Należy zapewnić odpowiednie monitorowanie przestrzeni ładunkowej z centrali manewrowo-kontrolnej.

17.2.4.9 Sygnał dźwiękowy instalacji wykrywacza pożaru powinien być słyszalny na mostku, w pomieszczeniu ogólnym załogi i w każdym chronionym pomieszczeniu objętym działaniem tej instalacji wykrywacza.

17.2.4.10 Gazowe urządzenia ostrzegawcze powinny być zaprojektowane, zainstalowane i przetestowane zgodnie z normą EN 60079-29-1.

17.2.4.11 Czujniki gazu powinny być zainstalowane na stałe w:
 .1 strefach przyłączonych do zbiorników paliwa, przylegających do zbiorników paliwa, przylegających do zbiorników, przylegających do zbiorników, przylegających do zbiorników,
 .2 przewodach otaczających rurociągi gazowe,
 .3 maszynowniach zawierających rurociągi gazowe, urządzenia gazowe lub urządzenia odbiorcze gazu,
 .4 pomieszczeniach, w których znajduje się układ przygotowania gazu,
 .5 innych zamkniętych pomieszczeniach zawierających rurociągi gazowe lub inne urządzenia gazowe bez przewodów,
 .6 innych zamkniętych pomieszczeniach, w których mogą gromadzić się opary gazu, łącznie z pomieszczeniami, do których doprowadzany jest środek gaśniczy i do pomieszczeń, do których doprowadzany jest środek gaśniczy,
 .7 śluzach powietrznych, oraz
 .8 wlotach wentylacyjnych do pomieszczeń, w których mogą gromadzić się opary gazu.

17.2.4.12 Czujniki gazu zainstalowane na stałe powinny być umieszczone w miejscu gromadzenia się gazu oraz w wylotach wentylacyjnych tych pomieszczeń. Alarm dźwiękowy i optyczny powinien zostać uruchomiony zanim stężenie gazu osiągnie 20 % dolnej granicy wybuchowości. Zabezpieczenie gazowe powinno być aktywowane przy 40 % dolnej granicy wybuchowości.

17.2.5 Sygnalizacja ostrzegawcza o uruchomieniu instalacji gaśniczych

17.2.5.1 Sygnalizacja ostrzegawcza o uruchomieniu instalacji gaśniczych powinna, oprócz wymagań niniejszego podrozdziału, spełniać wymagania zawarte w 7.4.11 niniejszej Części VII i wymagań zawartych w rozdziale 4 z Części V – Ochrona przeciwpożarowa.

17.2.5.2 Dźwiękowy i świetlny sygnał ostrzegawczy powinien być:
 .1 uruchamiany automatycznie w momencie rozpoczęcia aktywacji instalacji gaśniczej, np. w momencie otwarcia drzwi stanu, w momencie otwarcia drzwi stanu;
 .2 włączać w odpowiednim wyprzedzeniu do uruchomienia instalacji gaśniczej, nie krótszym niż 20 s. Ręczne wyłączenie powinno być niemożliwe;
 .3 słyszalny przy najwyższym poziomie hałasu panującego w chronionym pomieszczeniu (tj. pomieszczeniu, do którego doprowadzany jest środek gaśniczy) i w pomieszczeniach sąsiednich, połączonych z chronionym pomieszczeniem drzwiami komunikacyjnymi (gdzie drzwi te są zamknięte), różniący się od innych sygnałów dźwiękowych i świetlnych;
 .4 wykonany tak, aby jego obwód miał właściwości samokontrolne określone w 15.4.2.5 lub możliwość sprawdzenia działania bez konieczności aktywacji instalacji gaśniczej.
17.2.6 Uziemienie

17.2.6.1 Nie będące pod napięciem metalowe części urządzeń elektrycznych w przestrzeni ładunkowej, a także ochronne rury metalowe i pancery kabli w normalnych warunkach pracy powinny być uziemione, o ile nie są one ułożone w sposób zapewniający automatyczne uziemienie poprzez mocowanie do metalowej konstrukcji statku. Postanowienie to dotyczy także urządzeń o napięciu roboczym niższym niż 50V.

17.2.6.2 Każdy element rurociągów ładunkowych powinien być połączony elektrycznie z kadłubem.

17.2.6.3 Zbiorniki ładunkowe, w tym wstawiane, metalowe kontenery IBC i pojemniki do przewozu pół w normalnych warunkach pracy powinny być uziemione, w celu zapewnienia bezpiecznego dozowania płynów.

17.2.6.4 Wszystkie liny metalowe przebiegające nad ładowniami oraz wszystkie maszty powinny być uziemione, o ile nie zostały one połączone elektrycznie z metalową konstrukcją statku podczas ich montażu.

17.2.7 Kable i przewody

17.2.7.1 Wszystkie kable w przestrzeni ładunkowej powinny posiadać metalowe pancery.

17.2.7.2 Kable i gniazda wtyczkowe rozmieszczone w przestrzeni ładunkowej powinny być zabezpieczone przed uszkodzeniem mechanycznym.

17.2.7.3 W przestrzeni ładunkowej niedozwolone jest stosowanie przewodów przenośnych, z wyjątkiem obwodów elektrycznych w wykonaniu iskrobezpiecznym lub służących do zasilania świateł sygnalizacyjnych i oświetlenia trapu.

17.2.7.4 Kable obwodów iskrobezpiecznych należy odseparować od innych kabli, nie przewidzianych do użycia w tych obwodach (np. nie mogą być prowadzone w tej samej wiązce kabli i nie powinny być mocowane za pomocą tych samych zacisków).

17.2.7.5 Jako przewody przenośne przeznaczone do zasilania światła sygnalizacyjnych powinny być stosowane jedynie przewody typu H07RN-F według PN-EN 50525-2-21 lub przewody o konstrukcji co najmniej równorzędnej, posiadające żyły o przekroju poprzecznym nie mniejszym niż 1,5 mm². Przewody te powinny być jak najkrótsze i eksploatowane w sposób wykluczający możliwość ich przypadkowego uszkodzenia.

17.2.7.6 Kable układane na pomostach komunikacyjnych należy prowadzić w odpowiednich kanałach lub rurach (patrz 14.6.8).

17.2.8 Ogólne postanowienia przejściowe

17.2.8.1 Dla statków istniejących, poddawanych przebudowie dla uzyskania dodatkowego znaku w symbolu klasy, należy stosować wymagania podrozdziału 16.2 w zakresie uzgodnionym każdorazowo z PRS, uwzględniając postanowienia przejściowe zawarte w ADN.

17.3 Statki towarowe do przewozu materiałów niebezpiecznych w opakowaniach

17.3.1 Typ urządzeń elektrycznych i ich rozmieszczenie

17.3.1.1 Należy zapewnić możliwość wyłączania urządzeń elektrycznych, zainstalowanych w strefie chronionej, przy pomocy wyłączników umieszczonych na rozdzielnicy głównej. Wymaganie to nie dotyczy przypadków, gdy:

− urządzenia te są urządzeniami testowanymi, odpowiadającymi co najmniej klasie temperaturowej T4 i grupie wybuchowości II B;
− urządzenia te są urządzeniami o ograniczonym niebezpieczeństwie wybuchu.
17.3.1.2 Odpowiednie obwody elektryczne powinny być wyposażone w lampki kontrolne, wskazujące czy obwody znajdują się pod napięciem. Wyłączniki powinny być zabezpieczone przed użyciem przez osoby nieupoważnione. Zastosowane w strefie chronionej gniazda wtyczkowe powinny posiadać konstrukcję umożliwiającą połączenie tylko w stanie beznapięciowym.

Silniki elektryczne wentylatorów ładowni, które usytuowane są w strumieniu powietrznym, powinny być budowy wzmacnionej (Exe), z osłoną ognioszczelną (Exd), lub z osłoną pod ciśnieniem (Exp).

17.3.1.3 Gniazda wtyczkowe przeznaczone do zasilania świateł sygnalizacyjnych, do oświetlenia trapu lub kontenerów, powinny być zamontowane w bezpośrednim sąsiedztwie masztu sygnalizacyjnego, trapu lub kontenerów. Gniazda wtyczkowe przeznaczone do zasilania pomp zanurzeniowych i wentylatorów ładowni powinny być zamontowane w pobliżu luków.

17.3.1.4 Sygnał dźwiękowy instalacji wykrywacza pożaru powinien spełniać wymagania punktu 16.2.4.9.

17.3.2 Sygnalizacja ostrzegawcza o uruchomieniu instalacji gaśniczych

17.3.2.1 Sygnalizacja ostrzegawcza o uruchomieniu instalacji gaśniczych powinna spełniać wymagania podrozdziału 16.2.5.

17.3.3 Kable i przewody

17.3.3.1 Kable i gniazda wtyczkowe rozmieszczone w strefie chronionej powinny być zabezpieczone przed uszkodzeniem mechanicznym.

17.3.3.2 W strefie chronionej niedozwolone jest stosowanie kabli przenośnych, z wyjątkiem obwodów elektrycznych w wykonaniu iskrobezpiecznym lub do zasilania świateł sygnalizacyjnych i oświetlenia trapu, kontenerów, pomp zanurzeniowych, wentylatorów ładowni oraz zamkniętych luków z napędem elektrycznym.

17.3.3.3 Jako przewody przenośne, dopuszczone zgodnie z 16.3.2.2, powinny być stosowane jedynie przewody typu H07RN-F według PN-EN 50525-2-21 lub przewody o konstrukcji co najmniej równorzędną, posiadające żyły o przekroju nie mniejszym niż 1,5 mm².

Przewody te powinny być jak najkrótsze i ułożone w sposób wykluczający możliwość ich przypadkowego uszkodzenia.

17.3.3.4 Wszystkie liny metalowe przebiegające nad ładowniami oraz wszystkie maszty powinny być uziemione, o ile nie zostały one połączone elektrycznie z metalową konstrukcją statku podczas ich montażu.

17.4 Żurawie pływające – znak: dp

17.4.1 Wymagania niniejszego podrozdziału mają zastosowanie do wyposażenia elektrycznego żurawi pływających.

17.4.2 Dla żurawi pływających z własnym napędem moc podstawowych źródeł energii elektrycznej powinna być wystarczająca dla wyborczej pracy żurawia: podczas jazdy lub w warunkach operacji przeładunkowych.

17.4.3 Pomieszczenia i szafy przeznaczone do ustawienia akumulatorów, a także pomieszczenia awaryjnych źródeł energii elektrycznej mogą być umieszczone poniżej pokładu głównego, pod warunkiem spełnienia wszystkich innych wymagań zawartych w 11.2.

17.4.4 Żurawie pływające należy wyposażyć w sygnalizację akustyczną, uruchamianą z kabiny sterowniczej do podawania sygnałów dźwiękowych w czasie operacji ładunkowych.

17.5 Statki przystosowane do przewozu kontenerów – znak: con
17.5 Statki przystosowane do przewozu kontenerów – znak: con

17.5.1 Zakres stosowania

Wymagania niniejszego podrozdziału mają zastosowanie do wyposażenia elektrycznego statków przeznaczonych do przewozu kontenerów izotermicznych.

17.5.2 Zasilanie i rozdział energii elektrycznej

17.5.2.1 Moc podstawowych źródeł energii elektrycznej i przetwornic elektrycznych, oprócz spełniających wymagań 3.1.1, powinna zapewniać zasilanie przewidzianej do przewozu liczby kontenerów izotermicznych.

W celu zapewnienia zasilania kontenerów izotermicznych podczas operacji załadunkowych na statku mogą być wykorzystywane wszystkie podstawowe źródła energii elektrycznej i przetwornice elektryczne łącznie z rezerwowymi.

Jako wielkość mocy urządzeń elektrycznych kontenerów izotermicznych należy przyjmować ich moc zainstalowaną. Zapotrzebowanie mocy przez urządzenia elektryczne kontenera izotermicznego w warunkach pracy znamionowej nie powinno przekraczać 15 kW (18,75 kVA).

Stosowanie współczynników równoczesności i obciążenia podlega odrębnemu rozpatrzeniu przez PRS.

17.5.2.2 Urządzenia ochrony źródeł energii elektrycznej przed przeciążeniami, przewidziane w 8.2.3, powinna zapewniać odtłumienie obwodu zasilającego rozdzielnicę kontenerów izotermicznych od rozdzielniczki głównej w ostatniej kolejności.

17.5.2.3 Sieć elektryczna zasilająca urządzenia elektryczne kontenerów izotermicznych powinna być oddzielona od ogólnej sieci transformatorami rozdzielającymi, zasilanymi z rozdzielniczki głównej.

17.5.2.4 Zasilanie urządzeń elektrycznych kontenerów izotermicznych powinno odbywać się ze specjalnych rozdzielnic, zasilanych oddzielnymi obwodami.

17.5.2.5 Zasilanie gniazd wtyczkowych, zainstalowanych w ładowniach lub na otwartych pokładach w miejscach ustawienia kontenerów izotermicznych, powinno odbywać się oddzielnymi obwodami ze specjalnych rozdzielnic wymienionych w 16.5.2.4 i 16.5.3.3.

17.5.2.6 Sieć elektryczna gniazd wtyczkowych przeznaczonych do zasilania energią urządzeń elektrycznych kontenerów izotermicznych powinna mieć napięcie znamionowe 230 V lub 400 V trójfazowego prądu przemiennego o częstotliwości 50 Hz albo 277 V lub 480 V trójfazowego prądu przemiennego o częstotliwości 60 Hz.

17.5.3 Urządzenia rozdzielcze i transformatory

17.5.3.1 Rozdzielnice kontenerów izotermicznych, przetwornice elektryczne (jeżeli są zastosowane) i transformatory rozdzielające powinny być ustawione w pomieszczeniach zamkniętych ruchu elektrycznego.

17.5.3.2 Uzwojenia wtórne transformatörów rozdzielających powinny mieć izolowany punkt neutralny.

17.5.3.3 Każda rozdzielniczka powinna mieć aparaturę zapewniającą:

 .1 świetlną sygnalizację obecności napięcia na rozdzielniczce;
 .2 załączanie i wytłaczanie każdego obwodu zasilającego gniazda wtyczkowe;
 .3 zabezpieczenie przed zwarciami obwodów zasilających gniazda wtyczkowe;
 .4 pomiar rezystancji izolacji.

17.5.4 Gniazda wtyczkowe

17.5.4.1 W ładowniach przeznaczonych do przewozu kontenerów izotermicznych gniazda wtyczkowe mogą być instalowane tylko w celu zasilania kontenerów. Gniazda wtyczkowe powinny mieć stopień ochrony co najmniej IP 55 przy instalowaniu w ładowni oraz IP 56 – przy instalowaniu na otwartym pokładzie.
W przypadku stosowania elektrycznych systemów zdalnej kontroli temperatury, wilgotności, wentylacji i innych parametrów kontenerów izotermicznych, w ładowniach lub na pokładach mogą być instalowane dodatkowe gniazda wtyczkowe do przyłączenia takich urządzeń kontrolnych.

17.5.4.2 Gniazda wtyczkowe do zasilania urządzeń elektrycznych kontenerów izotermicznych, niezależnie od wymagań 12.2.4 powinny mieć wyłącznik z blokadą uniemożliwiającą rozłączenie lub połączenie wtyczki z gniazdem w położeniu "załączone" oraz powinny mieć tabliczkę informacyjną z podaną wielkością napięcia.

17.5.4.3 Zasilanie urządzeń elektrycznych kontenera izotermicznego z elektrycznej sieci statku powinno odbywać się poprzez gniazda wtyczkowe o kierunku wirowania faz w kolejności L1, L2, L3, zgodnie ze schematem przedstawionym na rysunku 16.5.4.3.

17.5.4.4 Gniazda wtyczkowe przeznaczone do zasilania urządzeń elektrycznych kontenerów izotermicznych powinny być obliczone na następujące prądy znamionowe:
- 60 A dla napięć 230 V, 50 Hz lub 277 V, 60 Hz;
- 32 A dla napięć 400 V, 50 Hz lub 480 V, 60 Hz.

17.5.4.5 Części stykowe połączeń wtyczkowych powinny mieć taką konstrukcję i wymiary, aby uniemowlić połączenie wtyczek z gniazdem wtyczkowym o innym napięciu znamionowym.

17.5.4.6 Konstrukcja i wymiary części stykowych gniazda wtyczkowych i wtyczek powinny odpowiadać normom międzynarodowym.

17.5.5 Uziemienia ochronne

Gniazdo wtyczkowe przeznaczone do podłączenia żyły uziemiającej giętego kabla kontenera izotermicznego powinno być uziemione żyłą uziemiającą w obwodzie zasilającym. Żyła uziemiająca kabla zasilającego powinna być uziemiona w miejscu ustawienia rozdzielnicy zasilającej gniazda wtyczkowe kontenerów izotermicznych.

17.6 Jednostki szybkie, znak – hsc

Wymagania dodatkowe dla jednostek szybkich zostały podane w Publikacji No. 92/P – Specific Requirements for Inland Waterways High-Speed Vessels – 2010.

17.7 Statki ekologiczne – znak: ECO AIR

17.7.1 Wymagania techniczne związane z układami zasilania z lądu podano w Publikacji Przepisowej PRS 106/P.
Załącznik 1

REZYSTANCJA IZOLACJI SIECI KABLOWEJ

1. Wartości rezystancji izolacji obwodów kablowej sieci elektrycznej, mierzone w odniesieniu do kadłuba statku w czasie prób zdawczych, po zakończeniu budowy statku lub w czasie przeglądów statków eksploataowych, nie powinny być niższe od podanych w tabeli 1.

Tabela 1

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Przeznaczenie obwodu</th>
<th>Minimalna rezystancja izolacji, [MΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>do 125 V</td>
</tr>
<tr>
<td>1</td>
<td>Zasilanie odbiorników oświetleniowych</td>
<td>0,3</td>
</tr>
<tr>
<td>2</td>
<td>Zasilanie odbiorników siłowych</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Obwody układów łączności (jeżeli nie ustalono innych wymagań)</td>
<td>0,3</td>
</tr>
</tbody>
</table>

2. W czasie badania każdy obwód może być podzielony na dowolną liczbę odcinków przy użyciu istniejących w obwodzie łączników lub przez wyłączenie bezpieczników albo odlaczenie odbiorników.

Załącznik 2

WIELKOŚCI MECHANICZNYCH I ELEKTRYCZNYCH PARAMETRÓW
SPRAWDZANYCH PODCZAS BADAŃ TYPU URZĄDZEŃ
ORAZ PRÓB INSTALACJI ELEKTRYCZNEJ STATKU

1 REZYSTANCJA IZOLACJI

1.1 Wartość rezystancji izolacji nowych urządzeń elektrycznych mierzona w wytwórni lub laboratorium badawczym powinna odpowiadać wymaganiom odpowiednich norm, lecz nie powinna być mniejsza niż:
- 10 MΩ na zimno, 1 MΩ na gorąco – dla urządzeń o napięciu znamionowym do 65 V włącznie,
- 100 MΩ na zimno, 10 MΩ na gorąco – dla urządzeń o napięciu znamionowym powyżej 65 V.

Dla maszyn elektrycznych przy pomiarze rezystancji izolacji po próbie wytrzymałości elektrycznej dopuszcza się wartość rezystancji na gorąco równą 1MΩ (patrz też Publikacja Nr 42/P – Próby wirujących maszyn elektrycznych).

1.2 Wartość rezystancji izolacji urządzeń elektrycznych względem kadłuba statku oraz pomiędzy fazami (biegunami), mierzona w czasie prób przeprowadzonych po zakończeniu budowy statku, nie powinna być mniejsza od wartości podanych w tabeli 1.2.

Rezystancje izolacji urządzeń elektrycznych, mierzona w czasie przeglądu statku może być mniejsza od podanej w tabeli 1.2, lecz nie może być mniejsza niż wartość obliczona przez przemnożenie znamionowego napięcia odbiornika przez współczynnik 2000 Ω/V.

Wartości rezystancji izolacji podane w tabeli 1.2 odnoszą się do urządzeń elektrycznych o napięciu do 500 V. Wartości minimalnych rezystancji izolacji urządzeń elektrycznych o napięciu powyżej 500 V, a także w przypadku maszyn elektrycznych o mocy powyżej 1000 kW (kVA), niezależnie od wysokości napięcia, podlegają odrębemu rozpatrzeniu przez PRS.

Wartości rezystancji izolacji należy odczytywać po upływie 1 minuty od chwili przyłożenia napięcia pomiarowego.
Tabela 1.2

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj urządzenia elektrycznego</th>
<th>Minimalna rezystancja izolacji w temperaturze otoczenia 20 ± 5°C i normalnej wilgotności, [MΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>na zimno</td>
</tr>
<tr>
<td>1</td>
<td>Maszyny elektryczne</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Transformatory</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Rozdzielnice</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Aparatura nastawczo-rozruchowa</td>
<td>5</td>
</tr>
</tbody>
</table>

2 WYTRZYMAŁOŚĆ ELEKTRYCZNA IZOLACJI

2.1 Wymagania ogólne

Wytrzymałość elektryczną izolacji urządzeń elektrycznych należy sprawdzać w czasie 1 minuty napięciem probierczym przemiennym, sinusoidalnym, o częstotliwości 50 Hz i o wartości skutecznej podanej w tabeli 2.1.

Tabela 2.1

<table>
<thead>
<tr>
<th>Napięcie znamionowe U_n, [V]</th>
<th>Napięcie probiercze U_p, [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 65</td>
<td>$2U_n + 500$</td>
</tr>
<tr>
<td>od 66 do 250</td>
<td>1500</td>
</tr>
<tr>
<td>od 251 do 500</td>
<td>2000</td>
</tr>
<tr>
<td>od 501 do 1000</td>
<td>$2U_n + 1000$</td>
</tr>
<tr>
<td>powyżej 1000</td>
<td>$3U_n$</td>
</tr>
</tbody>
</table>

Tabela 2.1 nie dotyczy urządzeń łączności oraz urządzeń elektrycznych z elementami półprzewodnikowymi, dla których wielkość napięcia probierczego podlega odrębnemu rozpatrzeniu przez PRS.

3 DOPUSZCZALNE TEMPERATURY

3.1 Dopuszczalne temperatury, w których materiały izolacyjne mogą długotrwałe pracować, podane są w tabeli 3.1.

Tabela 3.1

<table>
<thead>
<tr>
<th>Klasa ciepłoodporności izolacji według PN-87/E-02050</th>
<th>Dopuszczalne temperatury, [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>105</td>
</tr>
<tr>
<td>E</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>130</td>
</tr>
<tr>
<td>F</td>
<td>155</td>
</tr>
<tr>
<td>H</td>
<td>180</td>
</tr>
<tr>
<td>200, 220, 250</td>
<td>powyżej 180</td>
</tr>
</tbody>
</table>

Jeżeli izolacja składa się z różnych materiałów, to temperatury osiągane przez każdy z tych materiałów nie powinny przekraczać wartości dopuszczalnej dla danego materiału.

Jeżeli izolacja składa się z kilku warstw różnych materiałów, przy czym nie ma możliwości pomiaru temperatury osiąganej przez poszczególne materiały, to temperatura nie powinna przekraczać wartości dopuszczalnej dla materiału najniższej klasy.

Materiał izolacyjny zastosowany do ochrony mechanicznej lub jako przekładki dystansowe może mieć niższą klasę ciepłoodporności izolacji.
4 ODPORNOŚĆ NA NARAŻENIA ŚRODOWISKOWE

4.1 W odniesieniu do odporności na narażenia środowiskowe obowiązują, w zakresie każdorazowo określonym przez PRS, wymagania podane w Publikacji Nr 11/P – Próby środowiskowe wyposażenia statków.

Wykaz zmian obowiązujących od 1 lipca 2019 roku

<table>
<thead>
<tr>
<th>Pozycja</th>
<th>Tytuł/Temat</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Wprowadzenie pojęć regulatora prędkości obrotu; aktualizacja numerów norm</td>
<td>ES-TRIN 2017; PRS</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Dodano wymagania dla pulpitów sterowniczo-kontrolnych</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>5.2.14</td>
<td>Zwiększono wymagania dotyczące sygnalizacji awarii napędu elektrycznych urządzeń sterowych</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>5.2.20-5.2.22</td>
<td>Dodano wymagania dotyczące regulatorów prędkości zwrotu</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Dodano wymagania dla obwodów światel nawigacyjnych</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>7.6.1, 7.6.3</td>
<td>Dodano wymagania odnośnie sygnalizacji ruchomej sterówki</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>Rozdział 11</td>
<td>Dodano wymagania dla urządzeń energetycznych</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>12.1.6-12.1.7</td>
<td>Dodano wymagania ogólne dotyczące akumulatorów</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>12.4.5</td>
<td>Dodano wymagania dotyczące ładownia baterii akumulatorów</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>15.6.4.17</td>
<td>Dodano wymagania dotyczące układania kabli</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>17.2.3.10 – 17.2.3.13</td>
<td>Dodano wymagania dla urządzeń na zbiornikowcach do przewozu materiałów niebezpiecznych</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>17.2.4.10-17.2.4.12</td>
<td>Dodano wymagania dla urządzeń na zbiornikowcach do przewozu materiałów niebezpiecznych</td>
<td>ES-TRIN 2017</td>
</tr>
<tr>
<td>17.2.7.5; 17.3.3.3</td>
<td>Aktualizacja numeru normy</td>
<td>PRS</td>
</tr>
</tbody>
</table>