
GUIDANCE

INFORMATIVE PUBLICATION NO. 35/I

WAVE LOADS ON SHIPS

2018
July 

Publications I (Informative) are issued by Polski Rejestr Statków S.A. 
as guidance or explanatory notes to PRS Rules. 

GDAŃSK 



Informative Publication No. 35/I - Wave loads on Ships - July 2018, was accepted by 

Director for Ship Division of the Polish Register of Shipping S.A. on 29 June 2018.

© Copyright by Polski Rejestr Statkw S.A., 2018

PRS/OP, 06/2018



Contents
1 General 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Coordinate system and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical model for direct analysis of the long-term ship responses to waves 8
2.1 Probability density function of short-term ship response to waves . . . . . . . . . . . . . . . 8
2.2 Probability of ship presence in specific sea environment . . . . . . . . . . . . . . . . . . . . 9
2.3 Probability distribution of the sea state g(hs, tz) occurrence . . . . . . . . . . . . . . . . . . 10
2.4 Probability distribution of ship heading in relation to the direction of wave propagation . . 11
2.5 Probability of exceeding a ship response to waves . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 The ship loading condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Ship forward speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Spectral analysis 13
3.1 Energy spectrum of ship response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Determination of ship response to waves in frequency domain 14
4.1 Ship response to regular wave - transfer functions . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Pressure transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Equation of ship motions in waves 16
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Hydrodynamic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Linearization of hydrodynamic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Diffraction and radiation problems 20





1 General

1.1 Introduction

1.1.1. The Informative Publication No. 35/I - Wave loads on Ships gives a description of the hydrody-

namic analysis methods and procedures to support and satisfy requirements given in Part - II Hull of the

Rules for the Classification and Construction of Sea-going Ships and Common Structural Rules.

1.1.2. Prediction of ship motions and loads in waves is one of the most important elements to be

considered when designing the ship and anticipating its maritime properties. Due to the high complexity

of the physical phenomenon, the prediction is difficult.

The natural method of the prediction is to simulate the behaviour of the ship in irregular wave.

However, the need to use very complicated non-linear mathematical models to perform the simulations do

not allow to consider the ship behaviour in all possible sea conditions that ship will encounter throughout

lifetime. Simulation is possible for a finite, limited amount sea conditions, therefore it is mainly used to

carry out the analysis of the non-linear characteristics of the ship behaviour in specific wave conditions.

The possibility of considering ”all” sea states is provided by linear models and spectral analysis.

When describing any physical phenomenon, simplifying assumptions are made, based on which phys-

ical, mathematical and computational models are developed.

It is normally assumed, among others, that:

- sea waves are a stationary ergodic stochastic process, and the Gaussian process, which means that

the wave ordinates are subject to a normal distribution with a zero mean value and a variance

representing the severity of sea waves;

- the spectral density function is focused around a certain value (the process is narrowbanded);

- the dynamic system ship-wave is a linear system.

These assumptions facilitate the use of spectral analysis to determine the ship motions and ship loads

in wave, which comes down to considering the response of ship to the individual harmonics of the wave.

Further basic simplifying assumptions, enabling the use of numerical methods to solve the problem of

ship motions in the harmonic component of the wave, relate to hydrodynamic forces. It is assumed that

they are linear with respect to the moving surface of the sea and due to the disturbance which the ship

introduces to the wave with its presence and its motion. These allows to divide the hydrodynamic forces

into:

- Froude-Krylov’s forces, caused by undisturbed wave acting on the ship,

- diffraction forces due to the disturbance introduced to waves by a moving ship with a uniform speed,

- forces caused by the ship’s oscillating in calm water (radiation forces).

The ship motions and loads in irregular waves are, just like the wave, random. Prediction of the ship

motions and loads in waves requires determination of the probabilistic characteristics of these motions and

loads.

In general, the rate of change of sea conditions is discretized into a set of sea states. Each of them

is assumed to be stationary, has an associated probability of occurrence, and is defined by values of

the appropriate parameters such as significant wave height, characteristic wave period, diraction of wave

propagation, wave spectrum, etc.

Response of the ship to the given sea state can be computed for different speeds, heading angles

in relation to wave propagation and ship loading conditions. Since the sea condition can be considered

stationary only for a limited period of time, the results obtained in such a way are called short-term

prediction.
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Combining the ship response in various sea states with their probability of occurrence, the long-term

prediction of ship motion and loads is obtained.

To predict wave loads and ship motions correctly, many aspects are to be considered properly. The

prediction is mainly influenced by the following ones:

- the approach to the short-term response prediction,

- long-term prediction scheme,

- probability of occurrence of sea states,

- action of seafarers at sea, etc.

In the case of frequency-domain the transfer function is computed. This function makes it possible to

determine the spectral density function of the ship response to waves, which in turn allows to determine

the appropriate probability characteristics. The most important is a variance, because it enables to predict

the ship’s motions and loads in the wave.

1.2 Symbols

Symbols used in the present Publication:

β - heading angle

θ - roll angle

ϕ - pitch angle

λ - wave length

ρ - density; salt water = 1.025; fresh water =

1.0

ω - wave frequency

ωe - encounter frequency

g - acceleration of gravity = 9.81

A - wave amplitude

C - matrix of restoring forces

B - moulded breadth of ship

N - damping matrix

CB - block coefficient

D - moulded depth of ship

f - wave frequency

H - wave height

Hs - significant wave height

LCG - longitudinal centre of gravity from aft

perpendicular

m - mass of the ship

M - mass matrix (including added masses)

p - hydrodynamic pressure

SPM (ω) - wave spectrum,

T - moulded draught

T - wave period

Tz - zero up-crossing period

TCG - transverse centre of gravity from cen-

tre line

u - ship forward speed

V CG - vertical centre of gravity above base

line

x - longitudinal distance from origin of the

coordinate system

y - horizontal distance from origin of the co-

ordinate system

z - vertical distance from origin of the coor-

dinate system

1.3 Coordinate system and definitions

The coordinate system assumed in the section, as well as denotation of motion are shown in figure 1.

Definitions and abbreviations used in the present Publication:
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Fig. 1: Definition of coordinate system and denotations of ship motions

D i s p e r s i o n r e l a t i o n - the relationship between the wave period T , in s, and the wave length

λ, in m. This relation depends on the water depth d, in m.

R e g u l a r w a v e - two-dimensional wave on sinusoidal water surface, described by the ideal fluid

potential flow.

N o n - l i n e a r r e g u l a r w a v e s - asymmetric waves, where the phase velocity depends on wave

height.

P e a k p e r i o d Tp - the wave or the period of another response like vertical bending moment, in

s, with most energy in the wave or response spectrum.

P h a s e v e l o c i t y c - the propagation velocity of the wave form.

P r o b a b i l i t y d e n s i t y f u n c t i o n - function showing the probability of occurrence at dif-

ferent levels of parameter x, which could be any parameter.

S i g n i f i c a n t w a v e h e i g h t Hs - the average of the highest third wave in a sea state with a

duration of 3 hours.

W a v e p e r i o d T - the wave period, in s, is the time interval between successive crests at

particular point.

W a v e a m p l i t u d e A - is the waves amplitude below or above the still water surface, in m.

W a v e a n g u l a r f r e q u e n c y - ω = 2π/T , in rad/s.

W a v e f r e q u e n c y - f = 1/T , in 1/s.

W a v e l e n g t h λ - is the distance between successive crests, in m.

W a v e h e i g h t H - is the distance between the crest and trough within the wave period, in m.

W a v e n u m b e r - k = 2π/λ, in rad/s.

Z e r o u p - c r o s s i n g p e r i o d Tz - the wave or response period, in s, between two up-crossings

of the zero level in a specific wave/response event or average based on a short term sea state or long

term statistics.
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1.4 Application

This Informative Publication (Guidance) includes theories and methods for direct calculations of

hydrodynamic wave loads and ship motions operating in the North Atlantic environment and its linear

and weakly non-linear wave induced responses.

2 Theoretical model for direct analysis of the long-

term ship responses to waves

The ship motions and loads in waves and the ship operation are random processes. A mathematical

model of the probability of exceeding a given value yL of the ship response to waves is determined by the

following expression:

Pr(Y ≥ yL) =
∑
m

∑
l

∑
k

pkplpm

∫ ∞
yl

∫ ∞
0

∫ ∞
0

fklm(y|(hs, tz))g(hs, tz)dhsdtzdy (1)

where:

fklm = fklm(y|(hs, tz)) is the probability density function of the random variable Y (any ship

response to waves) in the sea state condition (HS , Tz), HS is the significant wave height and Tz is

the average zero up crossing wave period, at a certain angle β of ship course in relation to the wave

propagation, in a given sea environmental conditions A, and ship loading condition C;

g = g(hs, tz) is the probability density function of the sea state occurrence;

pk is the probability of ship heading γk, k = 1, . . . , r, in relation to waves;

pl is the probability of ship presence in specific sea environmental conditions Ai, i = 1, . . . , n;

pm is the probability of the ships loading condition occurrence, cm, m = 1, . . . , t;

yL is a given number.

Theoretical probability density functions in formula (1), strictly describing the sea states occurrence and

ship response to waves, are unknown. Hence, the following assumptions are introduced below.

2.1 Probability density function of short-term ship response to

waves

It is assumed that the probability density function of the random variable Y , representing a ship

response to waves in a given sea state (short-term response), can be described by the following Rayleigh

probability density function:

f(y) =
y

σ
exp

(
− y

2

2σ

)
. (2)

The probability that the amplitude of the response Y will exceed a given value is

P (Y > yL) =

∫ ∞
yl

y

σ
exp

(
− y

2

2σ

)
dy = exp

(
−y

2
L

2σ

)
(3)

where σ is the variance of random process of the ship response to wave.

Theoretically, the Rayleigh distribution represents the probability distribution of amplitudes of ran-

dom process with narrow-band spectrum. The buoy measurements showed that ocean waves have the

following characteristics [4]:
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i. waves are considered to be a steady-state ergodic random process;

ii. waves are a Gaussian random process (wave profiles are distributed following the normal probability

distribution with zero mean and variance representing the sea severity);

iii. the wave spectral density function is narrow-banded (its spectrum is sharply concentrated at a

particular frequency).

Based on the wave characteristics it was proved in [4] that the probability distribution of amplitudes

is the Rayleigh distribution. Furthermore, the narrow-banded assumption is a conservative approach.

This distribution can also be used to describe ship responses to waves in a given sea state, provided

the linear differential equations of motion are used to determine the responses.

After adoption of assumption (i), formula (1) takes the following form:

Pr(Y ≥ yL) =
∑
m

∑
l

∑
k

pkplpm

∫ ∞
0

∫ ∞
0

Pklm(Y > yL)g(hs, tz)dhsdtz

=
∑
m

∑
l

∑
k

pkplpm

∫ ∞
0

∫ ∞
0

exp

(
− y2

L

2σ|(hs, tz)

)∣∣∣∣
klm

g(hs, tz)dhsdtz

(4)

where Pklm is the probability (determined by the Rayleigh distribution) that a random ship response

amplitude Y will exceed a given value yL, in a given sea state (HS , Tz), for the ship heading γk in relation

to the direction of wave propagation, in a given sea environmental conditions Ai, and in the loading

condition Cm.

2.2 Probability of ship presence in specific sea environment

Let the ship sail during its life in a sea of area A which can be divided into separate areas Ai,

i = 1, . . . , n:

A =
n⋃
i=1

Ai.

It is assumed that in a suitably short period of time the alternating wave conditions in a given area

Ai, i = 1, . . . , n, can be defined by seaway characteriscics as significant wave height HS and characteristic

period Tz.

Fig. 2: Nautical zones
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According to the Functional Requirement II.2 of IMO GBS [6] the sea environmental conditions Ai,

i = 1, . . . , s, is to be the North Atlantic, i = 1, covering the zones 8, 9, 15 and 16 of GWS [5], defined by

IACS Rec. 34 [1].

The North Atlantic is represented by appropriate probabilities of occurrence of the sea states in

this area and by the Pierson-Moskowitz wave spectrum SHS ,Tz (ω). The Pierson-Moskowitz is one of the

simplest models used to describe a fully developed sea state, when a wind is blowing in such a long time

that cannot increase the energy in the wave – the energy transfer is balanced by dissipation. This spectrum

is a one-parameter spectrum completely described by the wind speed. However, mostly the sea state is

not fully developed as the wind speed and direction change, the fetch is too short, or the duration is not

long enough, especially for strong winds and high waves. The two-parameter Pierson-Moskowitz spectrum

is usually used to develop the irregular wave representing the sea state and is recommended by [1]

SHS ,Tz (ω) =
H2
S

4π

(
2π

Tz

)4

ω−5 exp

(
− 1

π

(
ωTz
2π

)−4
)

(5)

where ω is wave frequency, HS is significant wave height and Tz is average wave period between zero

up-crossings given by:

Tz = 2π

√
m0

m2

where m0 and m2 are zero and second spectral moments.

2.3 Probability distribution of the sea state g(hs, tz) occurrence

The probabilities pij of the sea state occurrence given in the form of matrix (scatter diagrams)

[HSi , Tzj ], i = 1, . . . , nh, j = 1, . . . , nt, are used to approximate the distribution g = g(hs, tz) in order

to make it possible to compute numerically the long-term probabilities of the ship responses.

Fig. 3: Scatter diagram for North Atlantic operation with Hs and Tz
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After adoption the scatter diagram, formula (4) takes the following form [3]:

Pr(Y > yL) =
∑
m

∑
l

∑
k

∑
j

∑
i

exp

(
− y2

L

2σijklm

)
pijpkplpm. (6)

Formula (6) is the numerical model to determine the long-term probability that the amplitude of the ship

response will exceed a given value yL. In the method to determine the long-term ship responses the scatter

diagram defined by IACS Rec. 34 [1], covering the zones 8, 9, 15 and 16 of GWS [5] was used.

2.4 Probability distribution of ship heading in relation to the

direction of wave propagation

The uniform probability distribution of ship heading γk in relation to the direction of wave propagation

is recommended by IACS Rec. 34 [1]. However, to better reflect the reality, the 3D distribution which de-

termines the heading distribution for each individual ship was developed, which results were approximated

for the following linear function of the ship length [3]:

P (L, γ) = a(γ)(L− 90) + P (90, γ), L[m] ∈ [90, 350],

P (L, γ) = 0.083333, L > 350[m],

a(γ) =
0.083333P (90, γ)

350− 90
,

determining the 1D probability distribution for L > 90[m], where P (90, γ), γ = 0◦, 30◦, 60◦, . . . , 33◦ is

the ship heading distribution presented in Table 1, approximating 3D distribution for ship of L = 90[m].

Vector [0.083333, 0.083333, . . . , 0.083333] represents the uniform distribution.

Tab. 1: 1D Conditional ship heading distribution P (90, γ), γ = 0◦, 30◦, 60◦, . . . , 33◦ developed

for ship of length L = 90[m]

γ 0 30 60 90 120 150 180 210 240 270 300 330

p 0.271838 0.040681 0.031733 0.02541 0.051746 0.047857 0.333307 0.047857 0.051746 0.02541 0.031733 0.040681

2.5 Probability of exceeding a ship response to waves

According to the requirement of IMO GBS FR II.1 [6], the specified ship design life is equal to 25 years.

This life span determines the number of cycles of the ship response to waves which in turn determines the

probability of response exceedance per cycle.

It was assumed in the numerical model determining the long-term ship responses to waves that the

probability of exceeding the design value of ship response to waves is 10−8, which approximately corre-

sponds to 25 years of the specified ship design life.

The specified design life according to the IMO GBS FR II.1 [6] (specified also in CSR) is to be 25

years.

The following figure shows the ratio between the 10−8 extreme value and the 25 years extreme value

for hull girder loads. The ratio Mwv(propb.10−8)/Mwv(25years) is greater than 1 and is increasing with the ship

length [3].
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Fig. 4: Ratio Mwv(propb.10−8)/Mwv(25years) at midship

2.6 The ship loading condition

For extreme loading for strength assessment with return period of 25 years, unfavourable loading

conditions according to the loading manual should be used.

2.7 Ship forward speed

The ship forward speed v is assumed to be equal to 5 knots for the extreme sea loads design scenario.

This speed is the minimum possible speed reducing the dynamic ship response to high waves and assuring

the manoeuvrability of the ship.

The maximum expected hull structure response induced by the most severe sea states almost coincides

with the long-term predicted value in the range of small exceeding probabilities. In the severe sea states

the ship speed is reduced both involuntarily and voluntarily based on good seamanship to the minimum

possible speed to assure the manoeuvrability of the ship. As shown in Figure 5 (included in TB Ref. Pt 1,

Ch 4, Sec 1 [1.1.5] [8]) which illustrates the speed reduction in severe weather, the speed equal to 5 knots

was used to determine the extreme design sea loads scenario.
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Fig. 5: Speed reduction vs the wave height

3 Spectral analysis

Determination of ship response in the frequency domain.

3.1 Energy spectrum of ship response

The Rayleigh distribution of the random ship response Y to waves is determined using the spectral

analysis according to which

- the energy spectrum of ship response SY (ω) is determined by:

SY (ω) = Y 2SHS ,Tz (ω), (7)

where SHS ,Tz (ω) is wave spectrum for the given sea state determined by HS and Tz, Y is transfer

function;

- variance σ of the considered random process of ship response Y is the zero moment of energy

spectrum SY (ω):

σ =

∫ ∞
0

ωiSY (ω)dω, i = 1, . . . , n. (8)

The variance σ determines the Rayleigh distribution (2) which in turn determines the probability that the

amplitude of the ship response Y will exceed a given value yL (3).

Variance σ of the considered random process of ship response Y is the zero moment of energy spectrum

SY (ω) defined for long crested waves. The short crested waves are recommended by [1] for the engineering

application, therefore, the energy spectrum SY (ω, ϑ) and the transfer function Y depend on relative angle

ϑ of wave spreading.

In this case the energy spectrum SY (ω, ϑ) of the considered ship response is determined by:

SY (ω, ϑ) = Y 2SHS ,Tz (ω, ϑ), (9)

where SHS ,Tz (ω, ϑ) = SHS ,Tz (ω)f(ϑ), SHS ,Tz (ω) is given by (5) and the f(ϑ)given in the following form:

f(ϑ) =

{
2
π cos2(ϑ0 − ϑ) for ϑ ∈

[
−π2 ,

π
2

]
0 otherwise

(10)
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is the angular spreading function, ϑ0 is the main direction of wave propagation, ϑ is the relative spreading

around the main direction of wave propagation. In long term calculations, all wave heading angles ϑ ∈
[−π/2, π/2] can be represented by the headings with increment at most ∆ϑ = π/6 between headings.

The variance σ, which is the zero order of the spectral moments of the ship response for a given

heading is described as:

σ = m0 =
2

π

∫ ∞
0

[∫ π
2

−π2
(cos(ϑ0 − ϑ)Y (ϑ, ω))2

]
SHS ,Tz (ω)dω (11)

4 Determination of ship response to waves in fre-

quency domain

The non-linear equations of ship motions in irregular wave are described by the following system of

differentiational equations:

m
(
V̇Q(t) + Ω(t)×VQ(t)

)
= F(t)

L̇ + Ω(t)× LQ(t) = M(t)

ṘUQ(t) = VQ −Ω(t)×RUQ(t)(
ϕ̇(t), θ̇(t), ψ̇(t)

)
= D−1

Ω Ω(t),

(12)

In order to linearise the forces, on the right side of the equations, so that they can be applied to a

linear model, the motion of the ship, the displacement of ship’s center of mass, its rotation angles and

speed are to be assumed small values. Therefore, the product of them is neglected and after expanding the

sine and cosine functions by the Maclarien’s series the non-linear elements can also be neglected. Applying

such linearisations to the equations (12) the following linear system of equations are obtained:

mẍUQ1
= f1

mẍUQ2
= f2

mẍUQ3 = f3

J1ϕ̈−D13ψ̈ = mQ1

J2θ̈ = mQ2

J3ψ̈ −D31ϕ̈ = mQ3

(13)

Substituting the ship displacements, Froud-Krylov, diffraction, radiation and restoring forces in the fol-

lowing form:

ξj(t) = ξAje
iωEt, j = 1, . . . , 6, (14)

to equations of motions (13), the following linear algebraic system of equations, determining the amplitude

of the vessel’s motion in a regular wave are obtained:[
−(ω2

EM + C) + iωEN
]
ξξξA = [YW + YD]A , (15)

where the elements of matrixes M and N have the following form:

Mii = m+mii, Mi+3,i+3 = Ji +m(i+3)(i+3), i = 1, 2, 3

Mij = mij for others i, j = 1, . . . , 6,

Nij = nij , j = 1, . . . , 6,

(16)

mij are added masses and nij are damping coefficients. Separating (15) to real and imaginary part, the

following set of twelve algebraic equations are obtained:[
−(ω2

EM + C) −ωEN
ωEN −(ω2

EM + C)

][
ξξξRA
ξξξIA

]
=

[
(YR

W + YR
D)A

(YI
W + YI

D)A

]
. (17)
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Solving the above equation, the ship displacement amplitude ξξξA for each ω of exciting wave, we get so-called

function X of ship motions excited by the harmonic wave of amplitude ζA = 1 (for angular ship motions

the wave slope kζA = 1, k = ω2
/g is taken into account). Such calculated functions X is dimensionless and

allows to calculate ships motion components using the formula (14):

ξj(t) = ξAje
iωEt = Xj(ω)ζAe

iωEt, j = 1, 2, 3,

ξj(t) = ξAje
iωEt = Xj(ω)kζAe

iωEt, j = 4, 5, 6,
(18)

where X = (X1(ω), . . . , X6(ω)) is function of excitation, ωE = ω(1− ωv
g cosβ) is encounter frequency.

4.1 Ship response to regular wave - transfer functions

The ship motion equations (17) were derived on the assumption that the ship motions are excited by

regular wave. The transfer function for particular degrees of freedom and their shift phases are determined

as follows:

|Xj(ω)| =
√
XR2

j (ω) +XI2
j (ω), δj(ω) = arctg

XI(ω)

XR(ω)
,

j = 1, . . . , 6, ω ∈ (0,∞),

(19)

The vertical displacement zw of any point x = (x1, x2, 0) of ship in relation to the wave surface is

given by the formula:

zw = ξ3 − (x1 − xG1)ξ5 + x2ξ4 − ζ, (20)

where ξ3 is vertical displacement of center of ship mass, ξ5 = θ and ξ4 = φ are Euler angles related to

pitch and roll, xG1 is the center of ship mass, and ζ = ζAe
−ik·xeiωEt is ordinate of the wave surface at

point (x1, x2, 0). Substituting functions (18) to equation (20) yields:

zw =
[
X3 − (x1 − xg1)kX5 + x2kX4 − e−ik·x

]
ζAe

iωEt, ω ∈ (0,∞). (21)

The expression in square brackets is therefore a complex function of the excitation of relative ship motions,

which is denoted by Zw. It is necessary to know the excitation function of heave, pitch and roll motions

to determine the Zw. The modulus of this function is transfer function of relative motions. Differentiation

of (21) in respect to time results in the transfer function of relative velocity.

Horizontal longitudinal acceleration of ship aHL, horizontal transversal acceleration aHT and vertical

acceleration aV at any point of the ship, excited by the wave acting on the cargo or ship structure, are

given by the formulas:

aHL(x, t) = −
[
ξ̈1 + (x3 − xG3)ξ̈5 − x2ξ̈6

]
aHT (x, t) = −

[
ξ̈2 + (x1 − xG1)ξ̈6 + (x3 − xG3)ξ̈4

]
aV (x, t) = −

[
ξ̈3 − (x1 − xG1)ξ̈5 − x2ξ̈4

]
,

(22)

where ξ̈1, ξ̈2 i ξ̈3 are accelerations of center of ship mass, and ξ̈4 = Φ̈, ξ̈5 = θ̈ and ξ̈6 = ψ̈ are angular

accelerations.

From equation (18) follows that ξ̈j(t) = −ω2
Eξj(t), j = 1, . . . , 6. Substituting this into formula (22),

yields:
aHL(x, t) = aHL(x)ζAe

iωEt,

aHT (x, t) = aHT (x)ζAe
iωEt,

aV (x, t) = aV (x)ζAe
iωEt,

(23)

where
aHL(x) = ω2

E [X1 + (z − zg)kX5 − ykX6] ,

aHT (x) = ω2
E [X2 + (x− xg)kX6 + (z − zg)kX4] ,

aV (x) = ω2
E [X3 − (x− xg)kX5 − ykX4] ,

(24)

and similarly as in the case of relative displacement, aHL(x), aHT (x) and aV are functions of accelerations

excitation and its modulus are transfer functions.
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4.2 Pressure transfer functions

Transfer functions of dynamic pressures acting on a specific point of the ship’s wetted surface are

determined by the formula

p− pa = −ρ
(
∂φ

∂t
− u0

∂φ

∂x1

)
− gx3.

The dynamic part of the pressure is determined by:

p(x, t) = p(x)ζAe
iωEt,

where

p(x) = ρg[ekx3−ik·x + i
ω

g
ϕD − (X3 + x2X2 − x1kX5) + ν

6∑
j=1

XjϕRj ], x ∈ S0, (25)

and ϕRj , j = 1, . . . , 6, ϕD are directly calculated from hydrodynamic theory. The modulus of p(x) function

is pressure transfer function.

5 Equation of ship motions in waves

5.1 Introduction

From the physical point of view force f and moment m determine the considered system of ship motion

equations. For a ship moving on waves, these functions mainly represent hydrodynamic forces generated

by the waves and the ship motions.

Ship motions in waves is a very complex phenomenon and its analysis can be made if simplifying

assumptions are introduced. These simplifications apply to the wave, to the flow around the ship moving

in the waves and to the ship motion. Depending on the type of simplifications two models are developed:

- simulation of ship motions in irregular waves,

- performing a spectral analysis of ship motion in waves using a dynamic ship-wave system.

5.2 Basic assumptions

Solution of the general differential problem (Navier-Stokes equation) describing physical phenomenon

is very difficult. Therefore, to develop theoretical model that allows determination of hydrodynamic forces

acting on the ship, the following assumptions and simplifications are introduced:

- the ship moves whit a steady speed in an unlimited depth of water,

- water is incompressible,

- water is ideal fluid,

- the flow around the ship’s hull is irrotational.

The flow that meets the above assumptions is a potential flow. The assumptions introduced result in

mathematical problem allowing to determine the flow in two steps:

- in the first one, the velocity potential of the water φ is determined as the solution of the hydrody-

namic boundary problem,

- in the second one, the pressure is determined from linear part of Bernulli equation:

p− pa = −ρ
(
∂φ

∂t
− u0

∂φ

∂z1

)
− ρgx3, (26)

where u0 is mean value of ship’s speed and x = (x1, x2, x3).
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In mathematical model describing the simulation of ship motion in irregular waves further simplifications

are adopted. It was assumed that the following forces act on the ship:

- Froude - Krilov forces generated by undisturbed wave;

- diffraction forces; disturbance that the ship brings to the water;

- radiation forces; the disturbance caused by ocsillating ship.

It means that the forces generated by each velocity potential can be determined independently and that

their superposition can be made (linear model of forces is assumed):

f = f [φW (x, t) + φD(x, t) + φR(x, t)] = f [φW (x, t)] + f [φD(x, t)] + f [φR(x, t)] (27)

where φW (x, t) is velocity field potential in udisturbed wave, φD(x, t) is diffraction potential field and

φR(x, t) is radiation potential field.

Complex velocity potential of harmonic wave is given by formula:

φW (x, t) = iζA
g

ω
ekx3−ik·x+iωEt = ϕW (x)eiωEt, (28)

where x = (x1, x2, x3), x = (x1, x2, 0), k = (k1, k2, 0) = (k cosβ, k sinβ, 0), k = ω2
/g is wave number,

ωE = ω
(

1− u0ω
g cosβ

)
is encounter frequency and β is angle between wave vector k and ship speed

vector u.

However, to determine the disturbance that the ship brings to the wave, further simplifying assump-

tions are introduced to the mathematical model:

- the disturbance that the ship brings into the wave can be approximated by the disturbance which

is caused by non-oscillating ship (diffraction),

- the disturbance which is caused by ship motion in waves can be approximated by disturbance which

is caused by oscillating ship on calm water (radiation),

- the diffraction velocity field can be described by the following formula

φD(x, t) = ϕD(x)eiωEt (29)

where ϕD is complex function of real variable.

From the above analysis it follows that the hydrodynamic forces depend on the ship motions. In order to

linearize such forces so that they can be applied to the linear model, the ship motions must also be linear.

The linear equations of ship motions is used in the spectral analysis to determine the transfer function,

which determines the vessel motion amplitude in the result of the action of regular wave with a unit

amplitude. The ship motion caused by a wave of unit amplitude is small in relation to the dimensions

of the ship, therefore it is possible to perform the linearization of radiation forces. In this case addition

assumptions are imposed on the radiation velocity field.

The radiation velocity field depends on the velocity of any point p of the wetted surface S of the ship

in the normal direction to this surface

vpn = (u + vp) · n = (u + vq(t) + ω(t)× rqp) · n
= u · n + p(t) · n + ω(t) · (rqp × n)

= u0n+
6∑
j=1

ξ̇j(t)nj ,

(30)

where nj , j = 1, 2, 3 are the coordinates of the normal vector, outward to surface S and

n4 = x2n3 − x3n2, n5 = x3n1 − x1n3, n6 = x1n2 − x2n1,
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while ξ̇j , j = 1, . . . , 6, are determined by:

ξ̇j = vqj , j = 1, 2, 3,

ξ̇4 ∼= ϕ̇, ξ̇5 ∼= θ̇, ξ̇6 ∼= ψ̇.

The vpn velocity described by (30) enables to write the radiation field in the following form:

φR(x, t) =
6∑
j=1

ξ̇j(t)ϕRj (x) (31)

where ξj , j = 1, . . . , 6, corresponds to particular degree of ship motion.

Based on the form of the excitation force, the ship motion caused by the harmonic wave is harmonic:

ξj(t) = ξAje
iωEt (32)

where ξAj = ξRAj + ξIAj and ωE is encounter frequency.

Substituting (31) and (32) to (27) we get dependence for the linear model:

f = f

ϕW (x)eiωEt + ϕD(x)eiωEt +
6∑
j=1

ξ̇j(t)ϕRj (x)


= eiωEt

f [ϕW (x)] + f [ϕD(x)] + iωE

6∑
j=1

ξAj f [ϕRj (x)]

 .

(33)

5.3 Hydrodynamic forces

The generalized hydrodynamic forces that are the result of wave impact on the moving ship are

determined by the following equations:

f(t) = −
∫
S

(p(x, t)− pa)n(x, t)dS

mq(t) = −
∫
S

(p(x, t)− pa)(rq(t)× n(x, t))dS

(34)

where p is pressure at the wetted surface of ship in its momentary position, pa is atmospheric pressure and

n is normal vector outward to S. The pressure p− pa is given by (26).

5.4 Linearization of hydrodynamic forces

In the case of small motions of the ship in relation to its equilibrium position higher order terms are

neglected. This can be achieved by developing functions that represent the forces or potentials of water

velocity according to Taylor’s formula. This developments takes the form:

- for scalar function φ = φ(x, t):

φ(x, t) = φ(x0, t0) + (∆rxx0
· ∇φ)(x0, t0)

+ ∆t
∂φ

∂t
(x0, t0) +O(∆rxx0

),
(35)

- for vector function f = f(x, t):

f(x, t) = f(x0, t0) + [(∆rxx0
· ∇)f ](x0, t0)

+ ∆t
∂f

∂t
(x0, t0) +O(∆rxx0

),
(36)
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where ∆rxx0
is position change of any ship point relative to its average position. With the help of this

formula we can represent the integrand functions (34) relative to the wetted surface in the average position

of the ship.

Substituting (35), (36), (26) to (34) and neglecting square elements - the following linearized hydro-

dynamic forces in general form are obtained:

Yj ≈ yj =

∫
S0

(
∂

∂t
− u0

∂

∂x1

)
ϕeiωEtnjds

=

∫
S0

(
iωE − u0

∂

∂x1

)
ϕeiωEtnjds

(37)

where nj , j = 1, 2, 3 are the components of the normal vector outer to surface S and

n4 = x2n3 − x3n2, n5 = x3n1 − x1n3, n6 = x1n2 − x2n1.

Substituting velocity potentials ϕ presented above to the formula (37) and omitting factor eiωEt, the

following types of forces which are presented below are obtained.

5.4.1. Froud-Krylov forces Substituting (28) to (37) the following force components, correspond-

ing to harmonic wave component, are obtained:

Y RWj
≈ yRWj

= −ρgζA
∫
S0

ekx3 cos(k · x)njds

Y IWj
≈ yIWj

= ρgζA

∫
S0

ekx3 sin(k · x)njds

j = 1, . . . , 6 (38)

where the upper indices R and I represent the real and imaginary part of the force.

5.4.2. Diffraction force Similary to above:

Y RDj ≈ y
R
Dj = −ρ

∫
S0

(
ωEϕ

I
D + u0

∂

∂x1
ϕRD

)
njds

Y IDj ≈ y
I
Dj = ρ

∫
S0

(
ωEϕ

R
D − u0

∂

∂x1
ϕID

)
njds.

j = 1, . . . , 6 (39)

5.4.3. Radiation force Substituting the radiation potential in the form of (35) and (36) into equa-

tion (37) yields:

YRj ≈ yRj = ρ

∫
S0

(
iωE − u0

∂

∂x1

)( 6∑
k=1

iωEξkϕRK

)
njds. (40)

After appropriate transformations, this equation takes the form

YRj ≈ yRj = −iρωEeiωEt
6∑
k=1

ξAk

∫
S0

((
ωEϕ

I
Rk

+ u0
∂

∂x1
ϕRRk

)
− i

(
ωEϕ

R
Rk
− u0

∂

∂x1
ϕIRk

))
njds j = 1, . . . , 6.

(41)

In order to approximate a linear system of equations describing the ship motion in waves by a system de-

scribing the harmonic oscillator, it is assumed that the radiation forces are proportional to the accelerations

and speed of the oscillating ship:

YRj ≈ yRj = −
6∑
k=1

(
mjk ξ̈ + njk ξ̇

)
= eiωEt

6∑
k=1

ξAk(ω2
Emjk − iωEnjk),

(42)
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where mjk = mjk(ωE) are added masses and njk = njk(ωE) are damping coefficientts.

Comparison of the right sight of equations (41) and (42) yields:

mjk = − ρ

ωE

∫
S0

(
ωEϕ

R
Rk
− u0

∂

∂x1
ϕIRk

)
njds

njk = ρ

∫
S0

(
ωEϕ

I
Rk

+ u0
∂

∂x1
ϕRRk

)
njds.

(43)

5.4.4. Restoring force The restoring forces are the result of the difference in force acting on the

displaced ship in still water and the weight of the ship. They are determined by 6×6 matrix with elements:

c33 = −ρg|Sw|,
c35 = c53 = ρgIS1,

c44 = −ρg(MV 3 + JS2),

c55 = −ρg(MV 3 + JS1),

(44)

where |Sw| is flotation field, IS1 is static moment of flotation, JS1 and JS1 are interia moments of flotation

and MV 3 is static moment of the under water volume of ship.

The remaining elements of the matrix are equal to zero.

5.4.5. Non-linear equations of ship motions Substituting generalized Froude-Krylov, diffrac-

tion and radiation forces to (12) and adding gravity force, damping force and rudder force, the following

non-linear equations of ship motions are obtained:

m
(
V̇Q(t) + Ω(t)×VQ(t)

)
= FW (t) + FD(t) + F1

R(t) + FT (t)

L̇ + Ω(t)× LQ(t) = MQW (t) + MQD(t) + F2
R(t) + MT (t)

ṘUQ(t) = VQ −Ω(t)×RUQ(t)(
ϕ̇(t), θ̇(t), ψ̇(t)

)
= D−1

Ω Ω(t),

(45)

where G = g(sin θ,− cos θ sinϕ,− cos θ cosϕ), g is gravity acceleration, FT (t) and MT (t) represent damp-

ing force and moment with rudder reaction moment.

The solution of the above system, at the given initial conditions, uniquely describes the ship’s motion

in waves. The solution of these equatins is only possible using numerical methods.

5.4.6. Linear equations of motions The linear equations of motions are presented in section 4,

formula (17).

6 Diffraction and radiation problems

In the case of a diffraction or radiation problem, we are dealing with disturbance that ship brings

into the waves or oscillating ship brings into undisturbed water. The shape of the underwater part of the

ship is also important and the boundary condition on the wetted ship surface must be added to boundary

problem. This condition requires, in case of radiation problem, the component vn of the water velocity,

normal to the wetted surface S0 of the ship, is to be equal to the normal component of velocity vsn of the

considered surface point S0, which can be described by:

vn(x) = vsn(x) where vn(x) = ∇φ · n =
∂φ

∂n
, (46)
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where n is a unit, normal vector external to the wetted surface of ship S0. In case of diffraction problem,

the normal component of the velocity of the wave reflected from the surface S0 has an opposite value to

the component of the normal velocity of the wave particle. Therefore, the boundary problem describing

the diffraction and radiation potential velocity field includes:

1. the Laplace’s equation

∆ϕ(x) = 0, (47)

2. the boundary condition

2.1 on the free surface

− νϕ(x)− 2iτ
∂ϕ(x)

∂x1
+

1

k0

∂2ϕ(x)

∂x2
1

+
∂ϕ(x)

∂x3
= 0, (48)

which can be denoted:

LSFϕ(x) ≡
(
−ν − 2iτ

∂

∂x1
+

1

k0

∂2

∂x2
1

+
∂

∂x3

)
ϕ(x) = 0, (49)

where ν = ω2
E/g, τ = ωEu0/g and k0 = g/u2

0;

2.2 on the ship wetted surface

- for the diffraction potential
∂ϕD(x)

∂n
= −∂ϕW1

(x)

n
, (50)

where ϕW1(x) is undisturbed wave potential;

- for the radiation potential

∂ϕRRi(x)

∂n
= ni,

∂ϕIRi(x)

∂n
= 0,

i = 1, . . . , 6, (51)

where nj , j = 1, 2, 3 are the coordinates of the outer of normal vector to surface S and

n4 = x2n3 − x3n2, n5 = x3n1 − x1n3, n6 = x1n2 − x2n1.

3. the condition in infinity

3.1 for the ships velocity u0 = 0

- the radiation condition

lim
ρ→∞

√
ρ

(
∂ϕ

∂ρ
+ iνϕ

)
= 0, (52)

- the condition in infinity on free surface

lim
ρ→∞

√
ρ|ϕ| ≤ c, (53)

where ρ =
√

(x1 − y1)2 + (x2 − y2)2, and c is constant;

3.2 for the ships velocity u0 > 0

- the condition imposed on the system of waves generated by the source, in the plane

x3 = 0

- the condition in infinity

lim
ρ→∞

√
ρ|ϕ| ≤ c, (54)

where ρ =
√

(x1 − y1)2 + (x2 − y2)2, and c is constant;
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4. the condition at the bottom of sea

lim
x3→−∞

∂ϕ(x)

∂x3
= 0. (55)

It is assumed that the solution of this problem is in the form of a single layer potential:

φ(x) =

∫
S0

µ(y)E(x, y)dsy −
u2

0

g

∫
l

µ(y)E(x, y)n2
1dly, (56)

where µ is complex density function of source distribution, l = ∂S0 is boundary of wetted surface S0, and

n = (n1, n2, n3) is normal vector, outward to surface S0. Function E(x, y) is fundamental solution for this

problem, satisfying the Laplace’s equation and boundary conditions, except the condition on the wetted

surface.

In the physical interpretation, the fundamental solution represents the velocity potential created by a

pulsating source with a unit strength, moving with a constant velocity under the free surface of the water.

In special cases it will be either a pulsating source or only a source moving with constant speed. The

function E which occure in (56) has the following form:

E(x, y) =
1

4π

[
1

|x− y|
− 1

|x− z|
+G(x, z)

]
, (57)

where x = (x1, x2, x3), y = (y1, y2, y3), z = (y1, y2,−y3),

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

|x− z| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 + y3)2,
(58)

and G is a harmonic function, which must be determined form Laplace’s equation and the conditions in

the free surface equation. Components of equation (57) were chosen based on the following theories:

- analysis of free surface condition,

- on the condition that the radiation waves and diffraction effect should disappear at infinity on free

surface,

- function 1
4π

[
1
|x−y| −

1
|x−z|

]
is Green function for Dirichlet half space problem.

Adoption of solution in the form of single potential layer reduces the solutions of (47)-(55) to solution

of second type Fredholm integral equation of II kind:

1

2
µ(x) +

∫
S0

µ(y)
∂

∂ny
E(x, y)dsy −

u2
0

g

∫
l

µ(y)
∂

∂ny
E(x, y)n2

1(y)dly = ϑn(x). (59)
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