Polski Rejestr Statków

PRZEPISY
KLASYFIKACJI I BUDOWY
DOKÓW PŁYWĄCYCH

CZĘŚĆ VI
URZĄDZENIA ELEKTRYCZNE

2006

GDAŃSK
PRZEPisy KlASYFIKACJi I BUdowy DOKÓw PŁywająCzych

opracowane i wydane przez Polski Rejestr Statków S.A., zwany dalej PRS, składają się z następujących części:

Część I – Zasady klasyfikacji
Część II – Kadłub i wyposażenie kadłubowe
Część III – Stateczność i wolna burta
Część IV – Ochrona przeciwpożarowa
Część V – Urządzenia maszynowe
Część VI – Urządzenia elektryczne
Część VII – Urządzenia dźwignicowe

natomiast w odniesieniu do materiałów i spawania obowiązują wymagania Części IX – Materialy i spawanie, Przepisów klasyfikacji i budowy statków morskich.

Część VI – Urządzenia elektryczne – 2006, została zatwierdzona przez Zarząd PRS S.A. w dniu 25 maja 2006 r. i wchodzi w życie z dniem 1 sierpnia 2006 r.

Z dniem wejścia w życie niniejszej Części VI, jej wymagania mają zastosowanie do doków pływających, na zasadach określonych w Części I – Zasady klasyfikacji.

Rozszerzeniem i uzupełnieniem Części VI – Urządzenia elektryczne są następujące publikacje PRS:

Publikacja Nr 9/P – Wymagania dla systemów komputerowych,
Publikacja Nr 11/P – Próby środowiskowe wyposażenia statków,
Publikacja Nr 42/P – Próby maszyn elektrycznych.

© Copyright by Polski Rejestr Statków S.A., 2006
<table>
<thead>
<tr>
<th>SPIS TREŚCI</th>
<th>str.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Postanowienia ogólne</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Zakres zastosowania</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Określenia i objaśnienia</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Zakres nadzoru</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Dokumentacja techniczna doku</td>
<td>7</td>
</tr>
<tr>
<td>2 Wymagania ogólne</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Warunki pracy</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Materiały</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Wymagania konstrukcyjne</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Ochrona przed porażeniem</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Ochrona odgromowa</td>
<td>13</td>
</tr>
<tr>
<td>2.6 Rozmieszczenie urządzeń</td>
<td>14</td>
</tr>
<tr>
<td>2.7 Pomieszczenia zamknięte ruchu elektrycznego</td>
<td>15</td>
</tr>
<tr>
<td>2.8 Wyposażenie elektryczne w pomieszczeniach zagrożonych wybuchem</td>
<td>15</td>
</tr>
<tr>
<td>2.9 Opisy i oznaczenia</td>
<td>16</td>
</tr>
<tr>
<td>3 Zasilanie doku</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Zasilanie z lądowej sieci elektroenergetycznej</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Przyłącza zasilania z lądu</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Poziom mocy zwarciowej</td>
<td>17</td>
</tr>
<tr>
<td>4 Rozdział energii elektrycznej</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Układy rozdzielcze</td>
<td>17</td>
</tr>
<tr>
<td>4.2 Napięcia dopuszczalne</td>
<td>18</td>
</tr>
<tr>
<td>4.3 Zasilanie ważnych urządzeń</td>
<td>19</td>
</tr>
<tr>
<td>4.4 Połączenia szynowe</td>
<td>19</td>
</tr>
<tr>
<td>4.5 Urządzenia rozdzielcze</td>
<td>21</td>
</tr>
<tr>
<td>4.6 Pulpity sterownicze</td>
<td>23</td>
</tr>
<tr>
<td>5 Napędy elektryczne mechanizmów i urządzeń</td>
<td>24</td>
</tr>
<tr>
<td>5.1 Wymagania ogólne</td>
<td>24</td>
</tr>
<tr>
<td>5.2 Blokady i łączniki bezpieczeństwa</td>
<td>24</td>
</tr>
<tr>
<td>5.3 Uruchamianie i wyłączanie silników</td>
<td>25</td>
</tr>
<tr>
<td>5.4 Napęd zasuw głównych i regulacyjnych</td>
<td>26</td>
</tr>
<tr>
<td>5.5 Napędy elektryczne pomp i wentylatorów</td>
<td>26</td>
</tr>
<tr>
<td>6 Oświetlenie</td>
<td>26</td>
</tr>
<tr>
<td>6.1 Wymagania ogólne</td>
<td>26</td>
</tr>
<tr>
<td>6.2 Oprawy oświetleniowe</td>
<td>27</td>
</tr>
<tr>
<td>6.3 Gniazda wtyczkowe oświetlenia przenośnego</td>
<td>28</td>
</tr>
<tr>
<td>7 Łączność wewnętrzna i sygnalizacja</td>
<td>28</td>
</tr>
<tr>
<td>7.1 Wymagania ogólne</td>
<td>28</td>
</tr>
</tbody>
</table>
7.2 Służbowa łączność telefoniczna ... 28
7.3 Sygnalizacja alarmowa .. 29
7.4 Sygnalizacja wykrywca pożaru ... 29
7.5 Łączność telefoniczna z centralą stoczni lub siecią miejską 30

8 Zabezpieczenia .. 31
8.1 Wymagania ogólne ... 31
8.2 Zabezpieczenia transformatorów .. 31
8.3 Zabezpieczenia silników elektrycznych .. 32
8.4 Zabezpieczenia prądnic ... 32
8.5 Zabezpieczenia akumulatorów ... 33

9 Awaryjne źródło energii elektrycznej ... 33
9.1 Wymagania ogólne ... 33
9.2 Oświetlenie awaryjne ... 34

10 Transformatory i pomieszczenia transformatorów 34
10.1 Wymagania ogólne .. 34
10.2 Pomieszczenia transformatorów z olejem palnym 35

11 Urządzenia energetykoelektroniczne ... 35
11.1 Wymagania ogólne .. 35
11.2 Układy sterowania i sygnalizacja ... 36

12 Akumulatory i pomieszczenia akumulatorów ... 36
12.1 Wymagania ogólne .. 36
12.2 Pomieszczenia akumulatorów ... 36
12.3 Ogrzewanie i wentylacja .. 37
12.4 Ładowanie baterii akumulatorów .. 38
12.5 Instalowanie urządzeń elektrycznych w pomieszczeniach akumulatorów . 38

13 Aparaty elektryczne i sprzęt instalacyjny ... 38
13.1 Aparaty elektryczne .. 38
13.2 Sprzęt instalacyjny .. 39

14 Urządzenia grzewcze .. 41
14.1 Wymagania ogólne .. 41
14.2 Ogrzewacze wnętrzowe .. 41

15 Kable i przewody .. 42
15.1 Wymagania ogólne .. 42
15.2 Sieć kablowa .. 42

16 Rezystancja izolacji urządzeń elektrycznych .. 51

17 Uziemienia doku .. 52
1 POSTANOWIENIA OGÓLNE

1.1 Zakres zastosowania

1.1.1 Wymagania Części VI – Urządzenia elektryczne, Przepisów klasyfikacji i budowy doków pływających (zwanych dalej Przepisami) mają zastosowanie do instalacji elektrycznych doków i innych obiektów pływających wymienionych w podrozdziale 1.1 z Części I – Zasady klasyfikacji.

1.2 Określenia i objaśnienia

Określenia i objaśnienia dotyczące ogólnej terminologii stosowanej w Przepisach podane są w Części I – Zasady klasyfikacji.

Dla potrzeb Części VI wprowadza się dodatkowo następujące określenia:

Awaryjne źródło energii elektrycznej – źródło przeznaczone do dostarczenia energii elektrycznej w celu zasilania niezbędnych odbiorników na doku w przypadku zaniku napięcia na szynach głównych rozdzielnic basztowych.

Główna rozdzielnicą basztowa – rozdzielnicza przeznaczona do rozdziału energii elektrycznej na urządzenia doku, zasilana z lądu lub z zainstalowanego na doku własnego źródła energii elektrycznej.

Materiał izolacyjny trudno zapalny – materiał spełniający wymagania określone w Publikacji Nr 11/P – Próby środowiskowe wyposażenia statków.

Napięcie bezpieczne – napięcie nie stwarzające możliwości porażenia lub poparzenia elektrycznego w warunkach normalnych. Warunki takie uważa się za spełnione, jeżeli użyczenia transformatorów, przetworów i innych urządzeń obniżających napięcie są elektrycznie rozdzielone i wielkość napięcia obniżonego tych urządzeń lub źródeł energii elektrycznej nie przekracza:

- przy prądzie stałym – 50 V między przewodami;
- przy prądzie przemiennym – 50 V między przewodami lub między kadłubem i fazą.

Pomieszczenia zamknięte ruchu elektrycznego – pomieszczenia lub miejsca przeznaczone wyłącznie dla urządzeń elektrycznych, dostępne tylko dla upoważnionego personelu.

Układ alarmowy – układ przeznaczony do sygnalizowania stanów, w których występują odchylenia od ustalonych wartości granicznych wybranych parametrów lub zmiany w wybranych warunkach pracy.

Układ bezpieczeństwa – układ przeznaczony do określonej ingerencji w stosunku do sterowanego urządzenia, mającej na celu zapobieżenie jego awarii lub rozszerzeniu jej skutków.
Układ sterowania zdalnego – układ przeznaczony do zdalnego oddziaływania przez człowieka na określone urządzenie w celu realizacji zadania sterowania postawionego przez sterującego.

Układ wskaują­cy – układ przeznaczony do wskazywania wartości określonych wielkości fizycznych lub wskazywania określonych stanów.

Układy kontrolne – wspólne określenie dla układów alarmowego, bezpieczeństwa i wskazującego.

Uziemienie – połączenie metaliczne (bezpośrednie lub przewodem uziemiającym) zacisku uziemiajacego urządzenia z metalowym kadłubem doku.

Ważne urządzenia – urządzenia zainstalowane na doku, których normalna praca zapewnia bezpieczeństwo doku, dokowanego statku i ludzi znajdujących się na doku.

Wieżyczka zasilania z lądu – konstrukcja na baszcie doku umożliwiająca zainstalowanie przyłącza zasilania z lądu.

1.3 Zakres nadzoru

1.3.1 Wskazania ogólne

Ogólne zasady dotyczące postępowania klasyfikacyjnego, nadzoru nad budową doku i produkcją urządzeń oraz przeglądów podane są w Części I – Zasady klasyfikacji.

1.3.2 Nadzór nad wykonaniem instalacji elektrycznej doku

1.3.2.1 Nadzorowi PRS w trakcie instalowania na doku podlegają następujące urządzenia i układy:

.1 zespoły prądotwórcze;
.2 transformatory zasilające;
.3 urządzenia rozdzielcze oraz pulpity kontrolne i sterownicze;
.4 napędy elektryczne:
 – pomp balastowych i pożarowych,
 – sprężarek,
 – kabestanów,
 – wentylatorów,
 – mechanizmów zasuwa głównych i regulacyjnych,
.5 instalacja oświetleniowa;
.6 służbową łączność wewnętrzna;
.7 sygnalizacja alarmowa i ostrzegawcza;
.8 sygnalizacja pożarowa;
.9 urządzenia elektryczne w pomieszczeniach i przestrzeniach zagrożonych wybuchem;
.10 sieć kablowa;
.11 instalacje odgromowe i przeciwporażeniowe;
.12 układ bezpieczeństwa napędów elektrycznych;
.13 układ automatyki pomp i mechanizmów;
.14 inne mechanizmy i urządzenia każdorazowo określone przez PRS.

1.3.3 Nadzór nad produkcją wyposażenia elektrycznego

1.3.3.1 Nadzorowi PRS w czasie produkcji podlegają następujące urządzenia i elementy wyposażenia elektrycznego przeznaczone do urządzeń i układów wymienionych w 1.3.2.1:
 .1 zespoły prądotwórcze;
 .2 prądnice i silniki elektryczne o mocy 50 kW (kVA) i większej;
 .3 transformatory o mocy większej niż 3 kVA;
 .4 rozdzielnice;
 .5 pulpity kontrolne i sterownicze;
 .6 aparatura łączeniowa, zabezpieczająca i regulacyjna;
 .7 urządzenia łączności wewnętrznej i sygnalizacji;
 .8 przetwornice maszynowe i urządzenia energoelektroniczne;
 .9 akumulatory;
 .10 kable elektryczne;
 .11 urządzenia grzewcze i ogrzewacze wnętrzowe;
 .12 komputery i sterowniki programowalne;
 .13 czujniki i przetworniki;
 .14 regulatorzy układów automatyki;
 .15 zawory sterowane energią pomocniczą;
 .16 siłowniki;
 .17 przekaźniki elektryczne, hydrauliczne, pneumatyczne;
 .18 inne elementy wyposażenia elektrycznego każdorazowo określone przez PRS.

1.3.3.2 Urządzenia w wykonaniu przeciwwybuchowym podlegają (pod względem wybuchowości) nadzorowi sprawowanemu przez kompetentne instytucje, których dokumenty honorowane są przez PRS, niezależnie od tego, czy dane urządzenie podlega nadzorowi w trakcie produkcji.

1.4 Dokumentacja techniczna doku

1.4.1 Dokumentacja klasyfikacyjna doku w budowie

1.4.1.1 Przed rozpoczęciem budowy doku należy przedstawić Centrali PRS do rozpatrzenia i zatwierdzenia następującą dokumentację:
 .1 Schemat zasadniczy instalacji elektrycznej wraz z zestawieniem danych o obwodach, aparatach łączeniowych i zabezpieczających oraz przekrojach kabli.
 .2 Schemat połączenia doku z instalacją lądową.
Schematy rozdzielnic i pulpitów kontrolnych i sterowniczych.

Bilans energetyczny dla zastosowanych podstawowych, rezerwowych i awaryjnych źródeł energii elektrycznej oraz transformatorów.

Schematy łączności wewnętrznej i sygnalizacji.

Dane dotyczące doboru głównej aparatury łącznościowej i zabezpieczającej oraz analizę wybiorczości zabezpieczeń.

Dane dotyczące urządzeń elektrycznych w pomieszczeniach zagrożonych wybuchem.

Zestawienie poziomu mocy zwarciowej na poszczególnych szynach rozdzielnic oraz na zasilaniu (do wglądu).

Obliczenia spadku napięcia w instalacji elektrycznej przy rozruchu silnika elektrycznego o największej mocy znamionowej.

Plan rezerwowego oświetlenia doku.

Opis techniczny zawierający wykaz parametrów objętych układami: alarmowym, bezpieczeństwa oraz sterowania zdalnego i automatycznego.

Schematy funkcjonalne poszczególnych układów automatyki urządzeń, mechanizmów i instalacji, podające informacje dotyczące sposobu zasilania, właściwości funkcjonalnych, struktury, ewentualnych połączeń z innymi układami oraz rodzaju i granicznych wartości parametrów dotyczących tych układów.

Wykaz elementów i urządzeń zastosowanych w poszczególnych układach, z podaniem ich przeznaczenia, typu, producenta i zakresu regulacji.

1.4.2 Dokumentacja wykonawcza doku w budowie

1.4.2.1 Po zatwierdzeniu przez Centralę PRS dokumentacji klasyfikacyjnej wymienionej w 1.4.1, należy przedstawić terenowo właściwej placówce lub agencji PRS do uzgodnienia dokumentację wykonawczą obejmującą:

1 Rysunki tras kablowych i zamocowania kabli;

2 Program prób urządzeń elektrycznych i zautomatyzowanych urządzeń doku.

1.4.3 Dokumentacja klasyfikacyjna doku w przebudowie lub odbudowie

1.4.3.1 Przed przystąpieniem do przebudowy lub odbudowy doku należy przedstawić Centrali PRS do rozpatrzenia i zatwierdzenia dokumentację tych mechanizmów i wyposażenia doku, które ulegają przebudowie lub odbudowie.

1.4.3.2 W przypadku instalowania na doku istniejącym nowych mechanizmów lub urządzeń objętych wymaganiami Przepisów, a zasadniczo różniących się od dotychczasowych, należy przedstawić Centrali PRS do rozpatrzenia i zatwierdzenia uzupełniającą dokumentację nowych instalacji związanych z tymi mechanizmami lub urządzeniami – w zakresie wymaganym dla doku w budowie (patrz 1.4.1).
2 WYMAGANIA OGÓLNE

2.1 Warunki pracy

2.1.1 Dla urządzeń elektrycznych instalowanych na dokach przeznaczonych do eksploatacji w strefie umiarkowanej określa się następujące normalne warunki pracy:

– temperatura otoczenia w maszynowni, kotłowni, rozdzielni, warsztatach, itp. pomieszczeniach: od 0 do +30 °C,

– temperatura otoczenia w pomieszczeniach szalowanych, jak sterownie, pomieszczenia załogi itp.: od 0 do 25 °C,

– temperatura otoczenia na pokładach otwartych: od –20 do +40 °C.

2.1.2 Urządzenia elektryczne, jeżeli w szczegółowych wymaganiach nie określono inaczej, powinny pracować poprawnie:

– przy odchyleniach napięcia w granicach od +6% do –10% napięcia znamionowego (wymagania odnośnie aparatów elektrycznych – patrz p. 13.1.6),

– przy odchyleniach częstotliwości w granicach ±5% częstotliwości znamionowej.

2.2 Materiały

2.2.1 Elementy konstrukcyjne urządzeń elektrycznych należy wykonywać z metalu lub co najmniej z materiałów izolacyjnych trudno zapalnych, odpornych na działanie atmosfery morskiej i par olejów, albo należy je odpowiednio chronić przed szkodliwym działaniem tych czynników. Konstrukcje z wymienionych materiałów powinny wytrzymać bez pogorszenia bezpieczeństwa obsługi i funkcjonalności urządzenia narażenia mechaniczne, elektryczne, termiczne oraz skutki oddziaływania wilgoci, które mogą pojawiać się w normalnej eksploatacji.

2.2.2 Śruby, nakrętki, zawiasy itp. elementy służące do mocowania pokryw urządzeń elektrycznych instalowanych na otwartych pokładach i w pomieszczeniach ze zwiększoną wilgotnością należy wykonywać z materiałów odpornych na korozję lub posiadających odpowiednie pokrycia antykorozjne.

2.3 Wymagania konstrukcyjne

2.3.1 Wymagania ogólne

2.3.1.1 Części, które w czasie eksploatacji mogą podlegać wymianie, powinny być łatwe do demontażu.

2.3.1.2 Urządzenia elektryczne powinny mieć osłony zapewniające stopień ochrony odpowiadający warunkom występującym w miejscu ich zainstalowania lub należy zastosować odpowiednie środki ochrony urządzenia przed szkodliwym wpływem czynników otaczających i ochrony personelu przed porażeniem prądem elektrycznym.
Ochrona personelu przed porażeniem w zakresie co najmniej IP2X lub IPXXB powinna być zapewniona także po otwarciu obudowy, szczególnie w czasie czynności kontrolnych i eksploatacyjnych (ustawianie, wymiana zabezpieczeń). Wymóg ten nie dotyczy przypadków, kiedy otwarcie obudowy powoduje automatyczne odłączenie urządzenia od napięcia.

2.3.1.3 Uszczelnienia części urządzeń elektrycznych (drzwi, pokryw, wzierników, dławiec itp.) powinny zapewniać w warunkach eksploatacyjnych właściwy stopień ochrony przed wnikaniem do wnętrza tych urządzeń ciał stałych i ciekłych, ze szczególnym uwzględnieniem ochrony przed wnikaniem pyłów.

Uszczelki powinny być przymocowane do obudowy lub pokrywy.

2.3.1.4 Oślny, płyty czołowe i pokrywy urządzeń elektrycznych znajdujących się w miejscach dostępnych dla osób postronnych, zapobiegające dostępu do części pod napięciem, powinny dać się otwierać tylko przy użyciu narzędzi.

2.3.1.5 Urządzenie elektryczne, w którym mogą gromadzić się skropliny, należy wyposażyć w urządzenia odwadniające. Wewnętrzn urządzenia należy wykonać kanały zapewniające odpływ kondensatu ze wszystkich części urządzenia. Uzwojenia i części znajdujące się pod napięciem należy tak rozmieścić lub zabezpieczyć, aby nie podlegały oddziaływaniu zbierających się wewnątrz urządzenia skroplin.

2.3.1.6 Jeżeli w pulpicie sterowniczym lub w rozdzielnicach zastosowane są przyrządy pomiarowe, do których doprowadzony jest olej, para lub woda, należy zastosować środki zapobiegające przedostawaniu się tych czynników do części urządzeń elektrycznych znajdujących się pod napięciem w razie uszkodzenia przyrządu lub rurociągów.

2.3.2 Połączenia wewnętrzne

2.3.2.1 Połączenia wewnętrzne w urządzeniach elektrycznych mogą być wykonane za pomocą szyn lub przewodów o izolacji z materiału trudno zapalnego.

2.3.2.2 Połączenia wewnętrzne w rozdzielnicach, pulpitach sterowniczo-kontrolnych i innych urządzeniach rozdzielczych, przełączających itp. należy wykonywać za pomocą przewodów o przekroju co najmniej 1 mm². W obwodach sterowania, zabezpieczeń, pomiaru parametrów, sygnalizacji i łączności wewnętrznej można stosować przewody o przekroju co najmniej 0,5 mm².

W elektrycznych i elektronicznych obwodach przetwarzania i przekazywania słabych sygnałów mogą być stosowane przewody o przekroju mniejszym niż 0,5 mm², co jednak w każdym przypadku wymaga odrębnego rozpatrzenia przez PRS.

2.3.2.3 Części przewodzące prąd należy tak mocować, aby nie przenosiły dodatkowych obciążen mechanicznych, przy czym nie należy stosować wkrętów wkręcanych bezpośrednio w materiał izolacyjny.
2.3.2.4 Końce wielodrutowych żył kabli i przewodów powinny być przygotowane odpowiednio do rodzaju stosowanego zacisku lub powinny być zaopatrzone w końcówki kablowe.

2.3.2.5 Przewody izolowane należy tak układać i mocować, aby nie nastąpiło zmniejszenie rezystancji izolacji i aby nie były one narażone na uszkodzenie na skutek działania sił elektrodynamicznych zwarcowych oraz sił dynamicznych wywołanych drganiami i wstrząsami.

2.3.2.6 Połączenia przewodów izolowanych z zaciskami lub szynami należy wykonywać w taki sposób, aby zapewnić prawidłową rezystancję zestyku uniemożliwiając przegrzanie izolacji przewodów w normalnych warunkach eksploatacji.

2.3.2.7 W przypadku stosowania szyn aluminiowych przyłączanie do nich szyn lub przewodów miedzianych powinno być wykonane przy użyciu specjalnych przekładek Cu-Al.

2.4 Ochrona przed porażeniem

2.4.1 Ekrany i metalowe uzbrojenie kabli oraz metalowe obudowy urządzeń elektrycznych wykonanych na napięcie wyższe niż bezpieczne powinny być skutecznie uziemione. Wymaganie to nie dotyczy urządzeń elektrycznych i ich elementów wymienionych w 2.4.2.

2.4.2 Można nie stosować uziemienia dla ochrony od porażenia w przypadku:
 .1 urządzeń elektrycznych zasilanych napięciem bezpiecznym;
 .2 urządzeń elektrycznych z izolacją podwójną lub wzmacnioną;
 .3 urządzeń elektrycznych z częściami metalowymi zamocowanymi w materiale izolacyjnym lub przechodzącymi przez materiał izolacyjny i odizolowanymi od części uziemionych oraz części będących pod napięciem w taki sposób, że w normalnych warunkach pracy nie mogą znaleźć się pod napięciem ani zetknąć się z częściami uziemionymi;
 .4 obudów łożysk specjalnie izolowanych;
 .5 cokołów oprawek i elementów mocujących lamp luminescencyjnych, abażurów, odpłyśników, obudów zamocowanych do oprawek lub opraw wykonanych z materiału izolacyjnego lub wkręconych w taki materiał;
 .6 uchwytów do mocowania kabli;
 .7 pojedynczych odbiorników o napięciu do 250 V, zasilanych przez transformator separacyjny.

2.4.3 Uzwojenia wtórne wszystkich przekładników prądowych i napięciowych powinny być uziemione.

2.4.4 Mocowanie przewodów uziemiających do kadłuba doku należy wykonywać śrubami o średnicy co najmniej 6 mm, jedynie do mocowania przewodów o przekroju do 2,5 mm² można stosować śruby o średnicy 4 mm, a do przewodów o przekroju do 4 mm² – śruby o średnicy 5 mm.
Śruby te nie powinny być przeznaczone do innych celów niż mocowanie przewodów uziemiających. Śruby wkręcane do materiału (bez nakrętek) powinny być z mosiądzu lub innego materiału odpornego na korozję.

Miejsce na kadłubie, do którego mocuje się przewód uziemiający, powinno być metalicznie czyste i w odpowiedni sposób zabezpieczone przed korozją.

2.4.5 Ustawione na stałe urządzenia elektryczne należy uziemiać przy pomocy zewnętrznych przewodów uziemiających lub żyły uziemiającej w kablu zasilającym.

Przy zastosowaniu do uziemienia jednej z żył kabla zasilającego, żyła ta powinna być połączona z uziemianą częścią urządzenia wewnątrz jego obudowy.

Można nie stosować specjalnego uziemienia, jeżeli zamocowanie urządzenia zapewnia trwały elektryczny styk między obudową urządzenia i kadłubem doku we wszystkich warunkach eksploatacji.

Uziemienie przy pomocy zewnętrznych przewodów uziemiających należy wykonywać przewodem miedzianym. Można stosować również przewody z innego odpornego na korozję metalu, pod warunkiem że ich rezystancja nie będzie większa od rezystancji wymaganej przewodu miedzianego.

Przekrój przewodu uziemiającego wykonanego z miedzi nie powinien być mniejszy od podanego w tabeli 2.4.5.

Tabela 2.4.5

<table>
<thead>
<tr>
<th>Przekrój żyły kabla przyłączonego do urządzenia stacjonarnego, [mm²]</th>
<th>Minimalny przekrój przewodu uziemiającego [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>żyła uziemiająca</td>
</tr>
<tr>
<td>do 4</td>
<td>przekrój żyły</td>
</tr>
<tr>
<td>powyższy 4 do 16</td>
<td>przekrój żyły</td>
</tr>
<tr>
<td>powyższy 16 do 35</td>
<td>16</td>
</tr>
<tr>
<td>powyższy 35 do 120</td>
<td>połowa przekroju żyły</td>
</tr>
<tr>
<td>powyższy 120</td>
<td>70</td>
</tr>
</tbody>
</table>

2.4.6 Uziemienie odbiorników ruchomych oraz przenośnych należy wykonywać przy pomocy uziemionych kołków w gniazdach wtyczkowych lub przy pomocy innych uziemionych elementów stykowych i miedzianej żyły uziemiającej w przewodzie zasilającym.

Przekrój żyły uziemiającej nie powinien być mniejszy od znamionowego przekroju żyły giętkiego kabla zasilającego – dla kabli do 16 mm² oraz powinien wynosić co najmniej połowę przekroju żyły tego kabla, lecz nie mniej niż 16 mm² – dla kabli o przekroju większym niż 16 mm².

2.4.7 Uziemienie ekranów i metalowego uzbrojenia kabli należy wykonywać jednym z następujących sposobów:

.1 miedzianym przewodem uziemiającym o przekroju nie mniejszym niż 1,5 mm² – dla kabli o przekroju do 25 mm² i nie mniejszym niż 4 mm² – dla kabli o przekroju większym niż 25 mm²;
.2 przez odpowiednie przymocowanie pancerza lub płaszcza metalowego do kadłuba doku;
.3 za pomocą pierścieni znajdujących się w dławnicach kablowych pod warunkiem, że są one odporne na korozję, dobrze przewodzące i sprężyste.
Uziemienia należy wykonywać na obu końcach kabli, z wyjątkiem kabli końcowych, które można uziemiać tylko od strony zasilania.
Jeżeli wyżej podane sposoby wprowadzają zakłócenia w pracy urządzenia, ekrany i metalowe uzbrojenie kabli można uziemiać w inny, uznaný lub uzgodniony z PRS sposób.

2.4.8 Zewnętrzne przewody uziemiające powinny być dostępne do kontroli oraz zabezpieczone przed poluzowaniem i uszkodzeniami mechanicznymi.

2.4.9 Przy napięciach wyższych niż bezpieczne należy stosować odpowiednie rodzaje oślon, chroniących przed przypadkowym dotknięciem części czynnych.

2.4.10 Urządzenia elektryczne o napięciu ponad 1000 V powinny znajdować się w pomieszczeniach zamkniętych ruchu elektrycznego. Wybór innego miejsca podlega odrębnemu rozpatrzeniu przez PRS.

2.5 Ochrona odgromowa

2.5.1 Wymagania ogólne

2.5.1.1 Na doku należy zastosować ochronę odgromową, której strefa ochronna powinna obejmować wszystkie urządzenia wymagające ochrony przed wyładowaniami atmosferycznymi.

2.5.1.2 Instalacja odgromowa powinna składać się ze zwodu i przewodów odprowadzających połączonych trwale z kadłubem doku. Można nie stosować specjalnych instalacji odgromowych, jeżeli konstrukcyjnie przewidziana jest ciągłość elektrycznych połączeń wieżyczek i masztów z kadłubem doku o przekrojach wytrzymujących ciepłne i dynamiczne skutki przepływu prądów wyładowań atmosferycznych. Dodatkowe zwody należy stosować tylko w tych przypadkach, gdy elementy konstrukcyjne nie tworzą wymaganej strefy ochronnej.

2.5.2 Zwód

2.5.2.1 Jeżeli na wieżyczce lub maszcie doku umieszczono jest urządzenie elektryczne, to należy zainstalować zwód mający skuteczne elektryczne połączenie z wieżyczką lub masztem.

2.5.2.2 Zwody należy wykonywać z pręta o średnicy co najmniej 12 mm. Pręt ten może być wykonany z miedzi, stopów miedzi lub ze stali odpowiednio zabezpieczonej przed korozją.
2.5.2.3 Zwód powinien być tak zamocowany, aby wystawał na taką wysokość ponad wieżyczkę lub maszt, która zapewni strefę ochronną przed wyladowaniem bezpośrednim urządzenia umieszczonego na wieżycze lub maszcie, jednak nie mniej niż 300 mm ponad wieżyczkę lub maszt.

2.5.3 Przewód odprowadzający

2.5.3.1 Przewody odprowadzające należy wykonywać z pręta, płaskownika lub przewodu wielodrutowego o przekroju co najmniej 70 mm² jeżeli są wykonywane z miedzi lub jej stopów i o przekroju nie mniejszym niż 100 mm² – jeżeli stosuje się stal, przy czym stal powinna być odpowiednio zabezpieczona przed korozją.

2.5.3.2 Przewody odprowadzające należy prowadzić po zewnętrznej stronie wieżyczek i masztów oraz w miarę możliwości prosto z możliwie najmniejszą liczbą zgięć, które powinny być łagodne i o możliwie największych promieniach krzywizny.

2.5.3.3 Przewody odprowadzające nie powinny przechodzić przez miejsca zagrożone wybuchem.

2.5.4 Połączenia w instalacji odgromowej

2.5.4.1 Połączenia w instalacji odgromowej należy wykonywać za pomocą spawania, zaciskania, nitowania lub zacisków śrubowych.

2.5.4.2 Powierzchnia styku połączeń powinna wynosić co najmniej 1000 mm².

Zaciski śrubowe i śruby powinny być wykonane z materiałów nie powodujących korozji elektrolitycznej tj. miedzi, jej stopów lub ze stali mającej odpowiednie zabezpieczenie antykorozyjne.

2.5.4.3 Wszystkie połączenia w instalacji odgromowej powinny być dostępne dla kontroli i zabezpieczone przed uszkodzeniami mechanicznymi.

2.6 Rozmieszczenie urządzeń

2.6.1 Urządzenia elektryczne należy tak instalować, aby zapewniony był dogodny dostęp do elementów manipulacyjnych, jak również do wszystkich części wymagających obsługi, przeglądów i wymiany.

2.6.2 Urządzenia chłodzone powietrzem należy tak umieszczać, aby nie zasysały powietrza chłodzącego z zęz lub innych miejsc, w których powietrze może być zanieczyszczone czynnikami szkodliwymi dla izolacji oraz materiałów przewodowych i konstrukcyjnych.

2.6.3 Urządzenia należy tak mocować, aby elementy mocujące nie zmniejszały wytrzymałości i wodoszczelnności pokładów, grodzi i poszycia kadłuba.
2.6.4 Odkrytych części urządzeń znajdujących się pod napięciem nie należy umieszczć w odległości mniejszej niż 300 mm mierzącego poziomo i 1200 mm mierzącego pionowo od niezabezpieczonych materiałów palnych.

2.6.5 Przy montażu urządzeń mających obudowy wykonane z innego materiału niż konstrukcje doku, na których są one mocowane, w razie konieczności należy zastosować odpowiednie środki zapobiegające powstawaniu korozji elektrolitycznej.

2.7 Pomieszczenia zamknięte ruchu elektrycznego

2.7.1 Drzwi pomieszczeń zamkniętych ruchu elektrycznego powinny otwierać się na zewnątrz i być zamykane kluczem. Drzwi wiodące do korytarzy i przejść mogą otwierać się do wewnątrz pod warunkiem zainstalowania zderzaków ograniczających. Na drzwiach należy umieścić odpowiedni napis ostrzegawczy. Od wewnątrz pomieszczenia drzwi powinny otwierać się bez użycia klucza.

2.7.2 Pomieszczenia zamknięte ruchu elektrycznego nie powinny przylegać do zbiorników cieczy palnych. Jeżeli wymaganie to jest konstrukcyjne niewykonalne, należy przedsięwziąć środki zapobiegające przedostawaniu się cieczy palnych do tych pomieszczeń.

2.7.3 Nie należy wykonywać wyjść, otwieranych świetlików i innych otworów z pomieszczeń zamkniętych ruchu elektrycznego do pomieszczeń i przestrzeni zagrożonych wybuchem.

2.7.4 Przez pomieszczenia zamknięte ruchu elektrycznego nie należy prowadzić rurociągów gaśniczych CO₂. Jeżeli zachodzi konieczność prowadzenia przez te pomieszczenia innych rurociągów, nie powinny one mieć złącza w pobliżu rozdzielnic i urządzeń elektrycznych.

2.7.5 W pomieszczeniach zamkniętych ruchu elektrycznego, w przejściach i miejscach obsługi urządzeń elektrycznych typu otwartego należy zainstalować poręče wykonane z materiału izolacyjnego, drewna lub uziemionego metalu pokrytego odpowiednim materiałem izolacyjnym.

2.8 Wyposażenie elektryczne w pomieszczeniach zagrożonych wybuchem

2.8.1 W przestrzeniach i pomieszczeniach zagrożonych wybuchem można instalować tylko urządzenia elektryczne w wykonaniu przeciwybuchowym, odpowiednim dla kategorii pomieszczenia oraz klasy temperaturowej i grupy wybuchowości mieszany.

Instalowanie urządzeń elektrycznych w pomieszczeniach akumulatorów powinno odpowiadać wymaganiom podanym w 12.5.
2.8.2 Oprawy oświetleniowe w wykonaniu przeciwwybuchowym należy instalować tak, aby wokół nich, z wyjątkiem miejsc mocowania, pozostawała swobodna przestrzeń wynosząca co najmniej 100 mm.

2.8.3 Wszystkie urządzenia zainstalowane w przestrzeniach i pomieszczeniach zagrożonych wybuchem, oprócz urządzeń wykrywaczy pożaru, powinny mieć rozłączniki, urządzenia zabezpieczające lub zestawy rozruchowe rozłączające wszystkie bieguny lub fazy, umieszczone na zewnątrz pomieszczeń i przestrzeni zagrożonych wybuchem.

2.8.4 Nie należy mocować kabli ani urządzeń elektrycznych bezpośrednio do ścianek zbiorników cieczy palnych, a w każdym przypadku odległość od ścianek zbiorników powinna wynosić co najmniej 75 mm dla urządzeń elektrycznych i 50 mm dla kabli.

2.8.5 W przestrzeniach i pomieszczeniach zagrożonych wybuchem można instalować tylko kable przeznaczone do urządzeń elektrycznych zainstalowanych w tych pomieszczeniach.

2.8.6 Kable przechodzące przez pomieszczenia i przestrzenie zagrożone wybuchem należy zabezpieczyć przed uszkodzeniami mechanicznymi.

2.9 Opisy i oznaczenia

2.9.1 Urządzenia elektryczne powinny mieć opisy informacyjne wykonane zgodnie ze schematami znajdującymi się na doku.

2.9.2 Urządzenia elektryczne powinny mieć w miejscu widocznym lub łatwo dostępnym wklejone lub załączone schematy połączeń.

3 ZASILANIE DOKU

3.1 Zasilanie z lądowej sieci elektroenergetycznej

3.1.1 Dok zasilany tylko z lądowej sieci elektroenergetycznej powinien być połączony z nią co najmniej dwoma obwodami. Obwód główny powinien być zwymiarowany na pełne zapotrzebowanie energii elektrycznej. Obwód rezerwowy dla warunków zasilania awaryjnego sieci elektroenergetycznej powinien być zwymiarowany na zasilanie co najmniej 33% ogólnej liczby pomp balastowych (osuszających), mechanizmów zasuwa, oświetlenia i niezbędnych urządzeń pomocniczych oraz co najmniej jednej pompy pożarowej.

3.1.2 Dok może być zasilany z lądowej sieci elektroenergetycznej jednym obwodem, jeżeli ma zainstalowany własny zespół prądotwórczy dla warunków zasilania awaryjnego sieci, przy czym moc zespołu powinna zapewniać normalną pracę jednej pompy balastowej (osuszającej), mechanizmów zasuwa, oświetlenia, niezbędnych urządzeń pomocniczych oraz jednej pompy pożarowej.
3.1.3 Każda baszta doku powinna być wyposażona we własną główną rozdzielnicę basztową energii elektrycznej.

3.1.4 Należy przewidzieć rezerwowe kable zasilające, ułożone pomiędzy głównymi rozdzielnicami basztowymi, zapewniające 100-procentową rezerwę obwodów siłowych oraz 20-procentową rezerwę obwodów sterowniczych.

3.1.5 Połączenia rozłączalne pomiędzy pontonami powinny być tak rozwiązane, aby nie zagrażały bezpieczeństwu w warunkach obsługi i eksploatacji.

3.2 Przyłącza zasilania z lądu

3.2.1 Wieżyczki zasilania z lądu i przyłącza lądowe powinny być usytuowane w miejscu wygodnym dla połączenia ich z siecią lądową.

3.2.2 Przyłącza zasilania z lądu powinny być połączone do rozdzielnic basztowych kablami ułożonymi na stałe.

3.2.3 Przewody łączące skrzynię przyłącza lądowego z zasilaniem z lądu powinny być tak umocowane, aby nie były narażone na nadmierne naciski, aby siły nacisku przewodów nie przenosiły się na zaciski przyłączeniowe oraz aby izolacja przewodów nie była narażona na uszkodzenia.

3.2.4 W przyłącze zasilania z lądu należy przewidzieć trwałe oznaczenie informujące o wartości znamionowej napięcia i częstotliwości.

3.3 Poziom mocy zwarcieowej

3.3.1 Dla każdego doku powinien być określony najwyższy dopuszczalny poziom mocy zwarcieowej. W miejscu przeznaczonym do przyłączenia zasilania z lądu należy umieścić informację o wielkości dopuszczalnego poziomu mocy zwarcieowej zgodnie z dokumentacją.

3.3.2 Przyłączenie doku do lądowej sieci elektroenergetycznej o wyższym poziomie mocy zwarcieowej niż określona dopuszczalna dla doku, może być wykonane tylko pod warunkiem zastosowania środków ograniczających moc zwarcieową.

4 ROZDZIAŁ ENERGII ELEKTRYCZNEJ

4.1 Układy rozdzielcze

4.1.1 W instalacjach na doku można stosować następujące układy rozdziału energii elektrycznej:

 .1 dla prądu przemiennego trójpazowego:
 – trójprowodowy izolowany;
 – trójprowodowy z uziemionym punktem zerowym;
 – czteroprzewodowy z uziemionym przewodem zerowym;
.2 dla prądu przemiennego jednofazowego:
- dwuprzewodowy izolowany;
- jednoprzewodowy z wykorzystaniem kadłuba doku jako przewodu po-wrotnego – tylko dla napięć do 30 V;

.3 dla prądu stałego:
- dwuprzewodowy izolowany;
- jednoprzewodowy z wykorzystaniem kadłuba doku jako przewodu po-wrotnego – tylko dla napięć do 50 V.

Stosowanie innych układów podlega odrębemu rozpatrzeniu przez PRS.

4.1.2 W układach trójfazowych prądu przemiennego należy tak wykonać przyłą-zenie odbiorników, aby w normalnych warunkach prądy poszczególnych faz nie różniły się o więcej niż 15%.

4.2 Napięcia dopuszczalne

4.2.1 Najwyższe dopuszczalne napięcia znamionowe zasilania źródeł własnych i odbiorników energii elektrycznej podano w tabeli 4.2.1.

Tabela 4.2.1
Najwyższe napięcie znamionowe zasilania

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Urządzenia</th>
<th>Najwyższe napięcie znamionowe1, V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>prąd stały</td>
</tr>
<tr>
<td>1</td>
<td>Zasilanie doku</td>
<td>1200</td>
</tr>
<tr>
<td>2</td>
<td>Prądnic ustawione na doku</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Odbiorniki siłowe</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>Odbiorniki grzewcze i obwody sterowania urządzeń</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>Wynośne punkty sterownicze</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>Oświetlenie, sygnalizacja i łączność wewnętrzna</td>
<td>250</td>
</tr>
<tr>
<td>7</td>
<td>Gniazda wtyczkowe</td>
<td>2503</td>
</tr>
</tbody>
</table>

1 Stosowanie napięć wyższych podlega odrębemu rozpatrzeniu przez PRS.

2 Dopuszczalne jest stosowanie napięcia przemiennego 440 V przy częstotliwości 60 Hz.

3 Przy gniazdach wtyczkowych o napięciu wyższym niż bezpieczne, zainstalowanych w miejscach i przestrzeniach o zwiększonej wilgotności, powinny być umieszczone napisy nakazujące stosowanie tylko odbiorników z izolacją podwójną lub wzmocnioną albo separowanych przez transformator separacyjny.

4 Dopuszczalne jest stosowanie gniazd wtyczkowych o napięciu 380 V do zasilania odbiorników przenośnych, jeżeli gniazda te są zamocowane na stałe w czasie ich użytkowania.
4.3 Zasilanie ważnych urządzeń

4.3.1 Z szyn głównych rozdzielnic basztowych powinny być zasilane oddzielnymi obwodami następujące odbiorniki:

1. napędy elektryczne pomp balastowych (osuszających);
2. napędy elektryczne wciągarek cumowniczych;
3. napędy elektryczne pomp pożarowych;
4. rozdzielnice zasilania elektrycznych napędów zasuw głównych i regulacyjnych przynależnych do jednej pompy balastowej (osuszającej);
5. rozdzielnice grupowe oświetlenia podstawowego;
6. rozdzielnice pulpitu sterowniczego mechanizmów zatapiań i podnoszenia doku (patrz także 4.6);
7. rozdzielnice automatycznych urządzeń sygnalizacji wykrywczej pożaru;
8. urządzenia do ładowania baterii akumulatorów zasilających ważne urządzenia;
9. rozdzielnice zasilania elektrycznych napędów zamknięć drzwi wodoszczelnych i urządzeń utrzymujących drzwi przeciwpożarowe w stanie otwartym oraz rozdzielnice sygnalizacji położenia i zamknięcia drzwi wodoszczelnych i przeciwpożarowych;
10. napędy elektryczne żurawi dokowych;
11. rozdzielnice urządzeń chłodniczych instalacji gaśniczej z dwutlenkiem węgla o niskim ciśnieniu;
12. inne, nie wymienione wyżej odbiorniki, określone każdorazowo przez PRS.

Dopuszczalne jest zasilanie odbiorników wymienionych w .7 i .9 oddzielnymi obwodami, wyposażonymi w aparaturę łączeniową i zabezpieczającą, z rozdzielnic grupowych urządzeń sygnalizacji.

4.3.2 Jeżeli szyny zbiorcze głównej rozdzielnicy basztowej podzielone są na sekcje mające aparaturę umożliwiającą rozłączanie sekcji, to napędy elektryczne, rozdzielnice grupowe, specjalne urządzenia rozdzielcze lub pulpity instalowane na doku podwójnie lub zasilane dwoma obwodami powinny być podłączone do różnych sekcji szyn zbiorczych głównej rozdzielnicy basztowej.

4.3.3 Obwody końcowe o prądzie znamionowym większym niż 16 A nie powinny służyć do zasilania więcej niż jednego odbiornika.

4.4 Połączenia szynowe

4.4.1 Dopuszczalne przy obciążeniach znamionowych i przy zwarcích granicznych temperatury szyn zbiorczych i połączeń nieizolowanych lub jednosekundową obciążalność zwarciami, dopuszczalną dla szyn miedzianych, należy przyjmować według norm krajowych.
4.4.2 Maksymalną dopuszczalną długotrwałą obciążalność szyn zbiorczych i połączeń nieizolowanych należy przyjmować według norm krajowych.

4.4.3 Biegunowość szyn i nieizolowanych połączeń prądu stałego należy oznaczać następującymi barwami:

.1 czerwoną dla bieguna dodatniego;
.2 niebieską dla bieguna ujemnego;
.3 czarną lub żółto-zieloną (paski) dla przewodów uziemiających.

Przewód wyrównawczy należy oznaczyć barwą tego bieguna, w którym się znajduje oraz dodatkowo białymi poprzecznymi paskami.

4.4.4 Szyny i połączenia nieizolowane, należące do różnych faz prądu przemiennego, należy oznaczyć następującymi barwami:

.1 żółtą dla 1. fazy;
.2 zieloną dla 2. fazy;
.3 fioletową dla 3. fazy;
.4 jasno-niebieską dla przewodu zerowego;
.5 zielono-żółtą (poprzeczne pasy) dla przewodów uziemiających.

4.4.5 Szyny nieizolowane zastosowane do rozdziału energii elektrycznej powinny być prowadzone w osłonach, tak aby niemożliwe było przypadkowe ich dotknięcie.

4.4.6 Odstępy izolacyjne w powietrzu między nieizolowanymi szynami o różnej biegunowości oraz między nieizolowanymi szynami a uziemionymi częściami metalowymi zaleca się przyjmować nie mniejsze niż podano w tabeli 4.4.6.

Tabela 4.4.6

<table>
<thead>
<tr>
<th>Odstępy izolacyjne w powietrzu, [mm], dla napięć</th>
</tr>
</thead>
<tbody>
<tr>
<td>Między</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>nieizolowanymi szynami i uziemionymi częściami metalowymi</td>
</tr>
<tr>
<td>nieizolowanymi szynami należącymi do różnych biegunów lub faz</td>
</tr>
</tbody>
</table>

4.4.7 W miejscach narażonych na uszkodzenia mechaniczne osłony torów szyновych powinny mieć odpowiednio wzmocnioną konstrukcję.
4.4.8 Przejścia torów szynowych przez grodzie wodoszczelne należy wykonać za pomocą wodoszczelnych izolatorów przepustowych lub innych równorzędnych uszczelnień z materiałów izolacyjnych, zapewniających wymaganą szczelność grodzi.

4.5 Urządzenia rozdzielcze

4.5.1 Konstrukcje rozdzielnic

4.5.1.1 Konstrukcje wsporcze, płyty czołowe i obudowy rozdzielnic powinny być wykonane ze stali lub innego niepalnego materiału.

4.5.1.2 Rozdzielnice powinny mieć dostatecznie sztywną konstrukcję, wytrzymałą na naprężenia mechaniczne powstające w warunkach eksploatacji oraz przy zwarciach.

4.5.1.3 Szyny zbiorcze, aparatura rozdzielcza i zabezpieczająca powinny być dostosowane do określonego dla danego doku dopuszczalnego poziomu mocy zwarcowej. Wymagania dotyczące odstępów izolacyjnych między szynami podano w 4.4.6.

4.5.1.4 Jeżeli w rozdzielnicach są obwody o różnych napięciach do 1 kV lub obok prądu przemiennego jest również prąd stały, to pola rozdzielcze dla poszczególnych rodzajów prądu lub wielkości napięć powinny być oddzielone od siebie lub oznaczone w sposób widoczny.

4.5.2 Rozmieszczenie aparatów i przyrządów pomiarowych

4.5.2.1 Każdy obwód rozdzielnic powinien mieć niemanewrowy łącznik na każdym biegunie lub fazie, o takiej konstrukcji, aby załączanie lub wyłączanie biegunów lub faz obwodów wielofazowych lub wielobiegunowych odbywało się równocześnie. Można nie instalować łączników na każdym obwodzie w rozdzielnicach mających łączniki centralne i zasilające obwody końcowe oświetlenia oraz w chronionych bezpiecznikami obwodach przyrządów, urządzeń blokady, sygnalizacji i lokalnego oświetlenia rozdzielnic.

4.5.2.2 W obwodach ważnych urządzeń o prądzie znamionowym 20 A i większym, należy instalować amperomierze. Można je umieszczać w głównych rozdzielnicach basztowych lub przy stanowiskach sterowniczych.

Mogą być stosowane amperomierze z przełącznikami, lecz nie mniej niż 1 amperomierz na 6 odbiorników.

4.5.2.3 W układach izolowanych należy zainstalować na głównych rozdzielnicach basztowych urządzenia do pomiaru rezystancji izolacji.

21
4.5.2.4 Zakresy skal przyrządów pomiarowych powinny być większe od wartości znamionowych o co najmniej 20% dla woltomierzy i co najmniej 30% dla amperomierzy i watomierzy.

4.5.2.5 Bezpieczniki wkręcanie należy tak instalować, aby przewody zasilające były przyłączone do dolnej wstawki.

4.5.2.6 Bezpieczniki chroniące bieguny lub fazy jednego obwodu należy instalować obok siebie w pionie lub poziomie. Rozmieszczenie bezpieczników w obwodach prądu przemennego zgodnie z kolejnością faz powinno być z lewa na prawo lub z góry w dół. W obwodach prądu stałego bezpiecznik bieguna dodatniego należy umieszczać z lewej strony lub u góry, albo bliżej obsługującego.

4.5.2.7 Bezpieczniki należy tak instalować w rozdzielnicach, aby były łatwo dostępne, a wymiana wkładek topikowych nie stwarzała zagrożenia dla obsługującego personelu.

4.5.2.8 Tam, gdzie to jest możliwe, łączniki należy tak instalować i przyłączać do szyn, aby w pozycji „wyłączone” styki ruchome oraz cała związana z łącznikiem aparatura zabezpieczająca i kontrolna były w stanie beznapęciowym.

4.5.2.9 Jeżeli w obwodach odejściowych rozdzielnic przewidziane są łączniki i bezpieczniki, to bezpieczniki powinny być umieszczone pomiędzy szynami a łącznikami. Stosowanie innej kolejności instalowania bezpieczników i łączników podlega odrębemu rozpatrzeniu przez PRS.

4.5.2.10 Przyrządy umieszczone na częściach ruchomych lub wysuwnych należy przyłączać za pomocą giełkowych przewodów wielodrutowych.

4.5.2.11 Aparaty, przyrządy, płyty czołowe i obwody odchodzące z rozdzielnic powinny mieć napisy informacyjne.

Stan załączenia aparatów łączeniowych powinien być oznaczony. Oprócz tego dla obwodów prądowych należy podawać znamionowy prąd zastosowanego bezpiecznika oraz nastawy wyłączników samoczynnych, przekaźników cieplnych i innych łączników.

4.5.3 Usytuowanie rozdzielnic

4.5.3.1 Rozdzielnice powinny być ustawione w pomieszczeniach łatwo dostępnych, przewietrzanych i wolnych od bezpośredniego wpływu zewnętrznych warunków atmosferycznych oraz w miejscach, w których nie byłyby narażone na uszkodzenia ze strony czynników zewnętrznych.

4.5.3.2 Rozdzielnice o napięciach do 1 kV należy oddzielić od rozdzielnic o napięciach powyżej 1 kV.
4.5.4 Dostęp do rozdzielnic

4.5.4.1 Z przodu rozdzielnic powinny być przejścia o szerokości nie mniejszej niż 600 mm przy długości rozdzielnic do 3 m i nie mniejszej niż 800 mm dla rozdzielnic dłuższych.

4.5.4.2 Wzdłuż rozdzielnic wolno stojących należy zapewnić z tyłu przejście o szerokości nie mniejszej niż 600 mm przy długości do 3 m oraz nie mniejszej niż 700 mm dla rozdzielnic dłuższych.

4.5.4.3 Przestrzeń z tyłu wolno stojących rozdzielnic, gdzie znajdują się odkryte części pod napięciem, powinna być odgrodzona i zamykana drzwiami otwieranymi na zewnątrz lub przesuwanymi w bok. Należy przewidzieć urządzenie do zamocowania drzwi w położeniu otwartym.

4.5.4.4 Z przestrzeni znajdujących się za wymienionymi w 4.5.4.1 i 4.5.4.2 wolno stojącymi rozdzielnicami o długości większej niż 3 m powinny być co najmniej dwa wyjścia, rozmieszczone po przeciwległych stronach rozdzielnic i prowadzące do pomieszczenia, w którym jest ona ustawiona. Zezwala się, aby jedne drzwi prowadziły do pomieszczenia przyległego, z którego istnieje co najmniej drugie wyjście prowadzące do dróg ewakuacji.

4.5.4.5 Szerokość przejść wymienionych w 4.5.4.1 i 4.5.4.2 należy mierzyć od najbardziej wystających części aparatury i konstrukcji rozdzielnic do najbardziej wystających części urządzeń lub konstrukcji kadłuba doku.

4.5.4.6 Przed i za rozdzielnicami, zasilanymi napięciem wyższym niż 50 V, należy umieścić na podłodze maty z olejoodpornego materiału izolacyjnego.

4.6 Pulpity sterownicze

4.6.1 Rozdzielnice pulpitu sterowniczego powinny być zasilane dwoma niezależnymi obwodami bezpośrednio z głównej rozdzielnic basztowej lub poprzez transformatory, przyłączone do różnych sekcji szyn zbiorczych głównej rozdzielnic basztowej (jeżeli zastosowano sekcjonowanie szyn).

4.6.2 Rozdzielnica pulpitu sterowniczego powinna mieć przełącznik obwodów zasilania przewidzianych w 4.6.1. Jeżeli zastosowano przełącznik automatyczny, to należy również zapewnić możliwość ręcznego wyboru obwodów zasilania, przy czym należy zastosować odpowiednie urządzenie blokujące.

4.6.3 Aparatura sterownicza zdalnego sterowania mechanizmami zatapiania i podnoszenia doku powinna być umieszczona na pulpicie sterowniczym.

4.6.4 Na pulpicie sterowniczym powinna znajdować się sygnalizacja obecności napięcia zasilającego dok oraz sygnalizacja pracy poszczególnych mechanizmów,
których działanie ma wpływ na bezpieczeństwo doku przy jego zanurzaniu i wynurzaniu.

Wymaga się umieszczenia schematów instalacji rurociągów balastowych z sygnaлизacją pracy napędów pomp i zasuw oraz górnych i dolnych położen zasuw.

4.6.5 Układy sterowania i sygnaлизacji mechanizmów zatapiańia i podnoszenia doku oraz pomiaru objętości w zbiornikach, wykonane z zastosowaniem techniki komputerowej, powinny spełniać wymagania Publikacji Nr 9/P – Wymagania dla systemów komputerowych.

5 NAPĘDY ELEKTRYCZNE MECHANIZMÓW I URZĄDZEŃ

5.1 Wymagania ogólne

5.1.1 Należy stosować maszyny elektryczne typu uznanego lub uzgodnionego z PRS. Maszyny te powinny poprawnie pracować w warunkach podanych w 2.1.

5.1.2 Usytuowanie stanowisk sterowniczych powinno być takie, aby zapewniona była łatwość obsługi i dobra widoczność.

5.1.3 Jeżeli ze względu na bezpieczeństwo doku lub dokowanego statku konieczne jest wzajemne uzależnienie pracy mechanizmów lub załączanie ich w określonej kolejności, to powinny być w tym celu zastosowane odpowiednie uzależnienia lub blokady.

5.1.4 Mechanizmy z napędem elektrycznym powinny mieć sygnalizację świetlną o załączeniu napędu.

5.1.5 Urządzenia z automatycznym, zdalnym i ręcznym sterowaniem powinny być tak wykonane, aby przy przechodzeniu na sterowanie ręczne, sterowanie automatyczne lub zdalne wyłączało się samoczynnie. Sterowanie ręczne powinno być niezależne od automatycznego lub zdalnego.

5.1.6 Napędy elektryczne urządzeń i mechanizmów, które mogą stwarzać niebezpieczeństwo przy przekraczaniu skrajnych dopuszczalnych dla nich położeń, powinny być wyposażone w łączniki kańcowe.

5.2 Blokady i łączniki bezpieczeństwa

5.2.1 Mechanizmy z elektrycznym i ręcznym napędem powinny mieć urządzenia blokujące, wykluczające równoczesną pracę tych napędów.

5.2.2 Układy sterowania napędów, których praca w pewnych warunkach może zagrazać bezpieczeństwu ludzi, doku lub dokowanego statku należy wyposażyć w łączniki bezpieczeństwa, zapewniające odłączenie zasilania napędu elektrycznego.

Łączniki bezpieczeństwa należy umieszczać na stanowiskach sterowniczych oraz w innych miejscach uwarunkowanych względami eksploatacji. Łączniki
beżpieczeństwa należy pomalować na kolor czerwony. W pobliżu łącznika należy umieścić napis o jego przeznaczeniu.

Łączniki te należy zabezpieczyć przed możliwością przypadkowego uruchomienia.

5.2.3 Rozruch mechanizmów, których silniki elektryczne lub aparatura wymagają podczas normalnej pracy dodatkowej wentylacji, powinien być możliwy tylko przy działającej wentylacji.

5.3 Uruchamianie i wyłączanie silników

5.3.1 Aparatura nastawczo-rozruchowa powinna być tak wykonana, aby uruchomienie silnika było możliwe tylko z położenia spoczynkowego.

5.3.2 Silniki klatkowe prądu przemiennego mogą być załączone bezpośrednio do sieci, pod warunkiem, że prąd rozruchu nie będzie powodował zakłóceń w sieci doku.

Krótkotrwałe obniżenie napięcia na zaciskach silnika w momencie rozruchu nie powinno przekraczać wartości podanych w tabeli 5.3.2

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Częstość łączeń</th>
<th>Dopuszczalne obniżenie napięcia w %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Silniki z częstym rozruchem</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Silniki z rzadkim rozruchem</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Silniki z bardzo rzadkim rozruchem</td>
<td>25*</td>
</tr>
</tbody>
</table>

* Możliwość zwiększenia podanego spadku napięcia podlega odrębnemu rozpatrzeniu przez PRS.

5.3.3 Należy przewidzieć odpowiednie urządzenia do odłączania napięcia z każdego silnika o mocy 0,5 kW lub większej i jego aparatury nastawczo-rozruchowej.

Jeżeli aparatura nastawczo-rozruchowa umieszczona jest w rozdzielnicy usytuowanej w tym samym pomieszczeniu co silniki napędu elektrycznego oraz widoczna jest z miejsca ich ustawienia, to można do tego celu stosować łączniki nie-manewrowe umieszczone w rozdzielnicy.

Jeżeli podane wyżej wymagania dotyczące umieszczenia aparatury nastawczo-rozruchowej nie są spełnione, to należy przewidzieć:

.1 urządzenie blokujące w stanie wyłączonym łącznik w rozdzielnicy; lub
.2 dodatkowy odłącznik w pobliżu silnika; lub
.3 takie umieszczanie bezpieczników w każdym biegunie lub fazie, aby mogły być one łatwo wyjęte i wstawione przez obsługujący personel.

Tabela 5.3.2

Krótkotrwałe obniżenie napięcia w momencie rozruchu

* Możliwość zwiększenia podanego spadku napięcia podlega odrębnemu rozpatrzeniu przez PRS.
5.4 Napęd zasuw głównych i regulacyjnych

5.4.1 Napęd zasuw powinien umożliwiać ich pełne zamknięcie lub otwarcie w czasie nie dłuższym niż 30 sekund.

5.4.2 Górne i dolne położenie zasuwy oraz praca silnika napędowego zasuwy powinny być sygnalizowane na pulpicie sterowniczym.

5.4.3 Zasadniczy napęd zasuw powinien być elektryczny lub elektro-hydrauliczny, a rezerwowy – ręczny.

5.4.4 Silniki napędowe zasuw powinny być zabezpieczone przed przeciżeńiem, a mechanizm napędowy zasuw powinien uniemożliwiać nagłe zatrzymanie silnika.

5.5 Napędy elektryczne pomp i wentylatorów

5.5.1 Należy przewidzieć możliwość uruchomienia pomp pożarowych z pulpitu w sterowni.

5.5.2 Miejskowe uruchomienie pomp pożarowych i zęgowych powinno być możliwe nawet w przypadku uszkodzenia ich obwodów zdalnego sterowania.

5.5.3 Urządzenia do zdalnego wyłączania napędów elektrycznych pomp i wentylatorów należy umieszczać w widocznych miejscach i zaopatrzyć w napisy informacyjne.

5.5.4 Silniki elektryczne wentylatorów powinny mieć co najmniej dwa urządzenia zdalnego wyłączania, przy czym jedno z nich powinno znajdować się w sterowni.

5.5.5 Należy przewidzieć sygnaлизację napełnienia zbiorników paliwa i oleju lub zapewnić samoczynne wyłączanie pomp w przypadku zapełnienia tych zbiorników.

5.5.6 Wentylacja nawiewowa i wyciągowa pomieszczeń bronionych objętościową instalacją gaśniczą powinna wyłączać się automatycznie w czasie uruchamiania tej instalacji.

6 OŚWIETLENIE

6.1 Wymagania ogólne

6.1.1 We wszystkich pomieszczeniach, miejscach i przestrzeniach doku, których oświetlenie jest niezbędne w celu zapewnienia bezpieczeństwa na doku, obsługi mechanizmów i urządzeń, przebywania i ewakuacji personelu, powinny być zainstalowane na stałe oprawy oświetlenia podstawowego, zasilane z grupowych rozdzielnic oświetlenia. Rozdzielnice oświetlenia podstawowego powinny być zasilane oddzielnymi obwodami przeznaczonymi wyłącznie do tego celu.
6.1.2 Jeden obwód oświetleniowy powinien zasilać nie więcej niż:
 – 10 punktów świetlnych przy napięciu do 50 V,
 – 18 punktów świetlnych przy napięciu do 250 V.
 Dopuszcza się instalowanie większej ilości punktów świetlnych pod warunkiem, że urządzenia zabezpieczające obliczone są na prąd znamionowy nie większy niż 10 A. Obwody końcowe oświetlenia pomieszczeń maszynowych i pokładów nie powinny być obciążone prądem większym niż 20 A.

6.1.3 Oświetlenie rozdzielnic i ich pomieszczeń oraz maszynowni i sterowni powinny być zasilane co najmniej z dwu niezależnych obwodów w ten sposób, aby po uszkodzeniu jednego obwodu była zachowana możliwie jak największa równomierność oświetlenia.

6.1.4 Oświetlenie podstawowe powinno być tak wykonane, aby pożar lub inne awarie w pomieszczeniach głównych rozdzielnic basztowych i/lub transformatorów nie mogły spowodować wyłączenia oświetlenia awaryjnego.

6.1.5 W oświetlonych przez lampy luminescencyjne pomieszczeniach i miejscach należy stosować odpowiednie środki w celu wyeliminowania zjawiska stroboskopowego.

6.1.6 Obwody oświetlenia powinny mieć w zasadzie łączniki dwubiegunowe. Jednobiegunowe łączniki można stosować w obwodach oświetlenia przy napięciu bezpiecznym oraz w obwodach poszczególnych opraw lub grup opraw o mocy sumarycznej nie większej niż 1 kW, instalowanych w suchych szalowanych pomieszczeniach mieszkalnych i służbowych.

6.1.7 Zewnętrzne stacjonarne oświetlenie doku powinno mieć łączniki centralne umieszczone w sterowni.

6.1.8 Dok powinien być wyposażony w cztery czerwone światła ostrzegawcze, usytuowane na końcach obu baszt. Światła powinny być tak zasilane, aby były czynne podczas przerwy w zasilaniu energią elektryczną z lądu. Światła te powinny być załączane centralnie ze sterowni.
 Żurawie należy wyposażyć w czerwone lampy ostrzegawcze, przynajmniej w najniższym punkcie żurawia.

6.2 Oprawy oświetleniowe

6.2.1 Oprawy oświetleniowe powinny być przystosowane do miejsca ich zainstalowania oraz, jeżeli są narażone na uszkodzenia mechaniczne, powinny mieć siatki ochronne.

6.2.2 Oprawy oświetleniowe powinny być tak instalowane, aby zapewniały należytą równomierne oświetlenie.
6.2.3 Oprawy oświetleniowe należy tak instalować, aby nie występowało nagrzewanie kabli oraz pobliskich materiałów i urządzeń powyżej dopuszczanych temperatur.

6.3 Gniazda wtyczkowe oświetlenia przenośnego

6.3.1 Gniazda wtyczkowe oświetlenia przenośnego należy co najmniej przewidzieć:
– w maszynowni,
– za rozdzielnicami,
– w sterowni,
– w pomieszczeniach ruchu elektrycznego.

6.3.2 Gniazda wtyczkowe instalowane w sieciach o różnych napięciach powinny różnić się konstrukcją, tak aby możliwe było połączenie tylko wtyczki odpowiedniej dla danego napięcia.

6.3.3 Gniazda wtyczkowe oświetlenia przenośnego i innych odbiorników energii elektrycznej, instalowane na otwartych pokładach, powinny być przystosowane do wkładania wtyczki z dołu.

6.3.4 Gniazda wtyczkowe nie mogą być instalowane poniżej podłogi w maszynowni oraz w pomieszczeniach akumulatorów i innych miejscach, w których wymagane jest wyposażenie w wykonaniu przeciwwybuchowym.

7 ŁĄCZNOŚĆ WEWNĘTRZNA I SYGNALIZACJA

7.1 Wymagania ogólne

7.1.1 Każdy dok o nośności powyżej 1000 t powinien być wyposażony w następujące urządzenia sygnalizacji i łączności wewnętrznej:
– służbową łączność telefoniczną,
– sygnalizację alarmową,
– łączność telefoniczną z centralą stoczni lub siecią miejską.

7.1.2 W przypadku zainstalowania na doku sygnalizacji wykrywacza pożaru powinna ona odpowiadać wymaganiom podanym w 7.4.

7.2 Służewska łączność telefoniczna

7.2.1 Na doku powinna być zapewniona służbowa dwustronna łączność telefoniczna pomiędzy sterownią a stanowiskami sterowania wciągarkami cumowniczymi oraz pomieszczeniami rozdzielnic energetycznych.
Zaleca się stosowanie łączności telefonicznej pomiędzy sterownią a pomostem.
7.2.2 Systemy służbowej łączności powinny zapewniać możliwość wywołania abonenta i wyraźne prowadzenie rozmów w warunkach specyficzного szumu w miejscu zainstalowania urządzeń łączności.
Jeżeli aparaty służbowej łączności telefonicznej umieszczane są w pomieszczeniach o dużym natężeniu hałasu, to należy stosować środki tłumiące dźwięki lub wyposażać aparaty w dodatkową słuchawkę.

7.2.3 Jeżeli sygnał wywoławczy mógłby być słabo słyszalny w miejscach o dużym natężeniu hałasu, to należy stosować dodatkowo sygnalizację optyczną.

7.2.4 Funkcję służbowej łączności telefonicznej, szczególnie w miejscach o dużym natężeniu hałasu, mogą spełniać urządzenia rozgłośni dyspozycyjnej zasilanej z akumulatorów lub radiotelefony.

7.3 Sygnalizacja alarmowa

7.3.1 Zasilanie układu alarmowego w normalnych warunkach może odbywać się z ogólnej sieci elektrycznej doku, jeżeli istnieje urządzenie samoczynnie przełączające obwody sygnalizacji alarmowej na baterię akumulatorów.

7.3.2 Sygnalizacja alarmowa powinna być uruchamiana ręcznie ze sterowni, za pomocą łącznika z napędem samopowrotnym.

7.3.3 łącznik powinien mieć wyraźne oznaczenia informujące o przeznaczeniu i połączeniach załączenia i wyłączenia. Przy łączniku powinna być umieszczona lampka kontrolna wskazująca załączenie napięcia do sieci sygnalizacji alarmowej.

7.3.4 Urządzenia akustyczne sygnalizacji alarmowej należy tak umieszczać, aby sygnał był dobrze słyszalny na tle szumów występujących w danym pomieszczeniu. Urządzenia akustyczne umieszczone w pomieszczeniach o dużej intensywności szumów powinny być wyposażone w sygnalizację świetlną.

7.3.5 W obwodach zasilania sygnalizacji alarmowej należy przewidzieć tylko zabezpieczenie zwarcieowe. Urządzenia zabezpieczające powinny być zainstalowane na obydwu przewodach obwodu zasilającego oraz w obwodach każdego urządzenia sygnalizującego.

7.4 Sygnalizacja wykrywca pożaru

7.4.1 Instalacja sygnalizacji wykrywcy pożaru powinna spełniać, oprócz wymagań niniejszego podrozdziału, również wymagania zawarte w rozdziale 4 Części V – Ochrona przeciwpożarowa.

7.4.2 Instalowanie czujek w instalacji wykrywcy pożaru, umieszczonych w pomieszczeniach zagrożonych wybuchem lub znajdujących się w strudze powietrza zasysanego z tych pomieszczeń, powinno odpowiadać wymaganiom zawartym w 2.8.
7.4.3 W maszynowni doku powinien być zainstalowany uznany system wykrywcy pożaru, samokontrolujący się i możliwy do okresowego sprawdzenia.

7.4.4 Instalacja sygnalizacji wykrywczej pożaru powinna być zasilana oddzielonymi obwodami z dwóch niezależnych źródeł energii elektrycznej. Jeżeli podstawowym źródłem zasilania jest sieć elektryczna, to drugim (awaryjnym) źródłem zasilania powinna być bateria akumulatorów, odpowiadająca pod względem pojemności i usytuowania wymaganiom rozdziału 9.

7.4.5 Uszkodzenie podstawowego zasilania systemu wykrywczego pożaru powinno powodować samoczynne przełączenie na awaryjne źródło zasilania z jednoczesnym załączeniem sygnalizacji akustycznej przełączenia zasilania.

7.4.6 System wykrywcy pożaru powinien być zdolny do szybkiego wykrywania pożaru w dowolnej części maszynowni, w normalnych warunkach działania urządzeń maszynowych i funkcjonującej wentylacji dostosowanej do zmian temperatury otoczenia.

7.4.7 Instalowanie czujników temperaturowych może być dopuszczone wyłącznie w pomieszczeniach o ograniczonej wysokości lub tam, gdzie ich zastosowanie jest uzasadnione.

7.4.8 System wykrywczy pożaru powinien podawać sygnały dźwiękowe i świetlne wyraźnie odróżniające się od sygnałów podawanych przez inne systemy alarmowe.

7.4.9 Sygnały systemu wykrywczego powinny być słyszalne lub widzialne w sterowni.

7.4.10 Sygnalizacja ostrzegawcza o uruchomieniu instalacji gaśniczej powinna być zasilana z baterii akumulatorów.

7.4.11 Jeżeli przewidziana jest sygnalizacja wykrywca pożaru, to sygnalizacja ostrzegawcza powinna być zasilana z baterii akumulatorów sygnalizacji wykrywcej.

7.5 Łączańość telefoniczna z centralą stoczni lub siecią miejską

7.5.1 Dok powinien mieć stałą stację telefoniczną przyłączaną do wewnętrznej zakładowej sieci telefonicznej.

7.5.2 Dok powinien mieć przewidziany co najmniej jeden obwód telefoniczny, doprowadzony z centrali stoczniowej lub sieci miejskiej, przeznaczony dla połączenia ze stacją telefoniczną statku dokowanego.
8 ZABEZPIECZENIA

8.1 Wymagania ogólne

8.1.1 Obwody odchodzące z rozdzielnic powinny być zabezpieczone przed skutkami zwarć i przeciążeń za pomocą urządzeń umieszczonych na początku każdego obwodu, z wyjątkiem przypadku, o którym mowa w 8.3.3.

Jeżeli nie jest możliwe wystąpienie przeciążenia w obwodzie, to obwód może być zabezpieczony tylko przed skutkami zwarć.

8.1.2 Zabezpieczenia należy dobierać do charakterystyk zabezpieczanych urządzeń w taki sposób, aby ich zadziałanie następowało przy wszystkich niedopuszczalnych przeciążeniach.

8.1.3 System zabezpieczeń powinien tworzyć selektywny układ w całym zakresie prądów przeciążeń i spodziewanych prądów zwarcowych.

Zabezpieczenia zwarcie i przeciążenia nie powinny zadziałać pod wpływem prądów rozruchowych zabezpieczanych przez nie urządzeń.

8.1.4 Zabezpieczenia przeciążeń powinny być zastosowane:
 .1 w co najmniej jednej fazie lub biegunie dodatnim – w układzie dwuprzewodowym;
 .2 w co najmniej dwóch fazach – w układzie izolowanym trójprzewodowym trójfazowym prądu przemiennego;
 .3 we wszystkich fazach – w czteroprzewodowym układzie trójfazowym prądu przemiennego.

8.1.5 Zabezpieczenia zwarciałe należy stosować w każdym izolowanym biegunie układu prądu stałego oraz w każdej fazie układu prądu przemiennego.

Zabezpieczenia zwarcie należy nastawiać na zadziałanie przy prądzie nie mniejszym niż 200% obciążenia znamionowego. Zadziałanie może być natychmiastowe lub ze zwłoką czasową, niezbędną dla zapewnienia odpowiedniej selektywności.

Do zabezpieczenia kabli zasilających i odbiorników przed skutkami zwarć mogą być stosowane te same elementy zabezpieczające.

8.1.6 Jeżeli w jakiejkolwiek części obwodu zasilającego przekrój przewodu ulega zmniejszeniu, to należy zainstalować dodatkowe zabezpieczenie, gdy poprzednio zabezpieczenie nie chroni przewodu o zmniejszonym przekroju.

8.2 Zabezpieczenia transformatorów

8.2.1 Obwody zasilające uzwojenia pierwotne transformatorów powinny być zabezpieczone przed skutkami zwarć i przeciążeń.

Transformatory o mocy do 6,3 kVA mogą być zabezpieczone tylko bezzpiecznikami topikowymi.
8.2.2 Transformatory olejowe powinny być wyposażone w zabezpieczenia gazowo-podmuchowe przed obniżeniem poziomu oleju i uszkodzeniami wewnątrz kadzi transformatora.

8.2.3 CzuJNIki temperaturowe, zabezpieczenia przeciążeniowe i gazowo-podmuchowe transformerów zaleca się wykonać jako zabezpieczenia zwłoczne, działające w pierwszym stopniu na sygnalizację, a po określonej zwłocie czasowej – powodujące wyłączenie.

8.2.4 Dla przekaźników napięciowych i transformatorów zasilających obwody sterowania można nie stosować ani sygnalizacji, ani zabezpieczenia przeciążeniowego.

8.2.5 Transformatory przeznaczone do pracy równoległej należy wyposażyć w łączniki odłączające ich uwojenia górnego i dolnego napięcia.

8.2.6 Przekaźniki prądowe powinny być tak podłączone, aby wykluczona była możliwość rozwarcia uzwojenia wtórnego przy przełączeniu obwodów.

8.3 Zabezpieczenia silników elektrycznych

8.3.1 W obwodach odchodzących z rozdzielnic, a zasilających silniki o mocy większej niż 0,5 kW, należy zainstalować zabezpieczenia zwarcieowe i przeciążeniowe oraz zabezpieczenia zanikowo-napięciowe, jeżeli nie wymaga się, aby silnik samoczynnie uruchamiał się powtórnie.

Zabezpieczenia przeciążeniowe i zanikowo-napięciowe mogą być zainstalowane w urządzeniach rozruchowych silników elektrycznych.

8.3.2 Zabezpieczenia przeciążeniowe silników przeznaczonych do pracy ciągłej powinny powodować wyłączenie zabezpieczanego silnika przy obciążeniu prądem ciągłym o wartości pomiędzy 105 a 125% prądu znamionowego.

Zabezpieczenia przeciążeniowe silników elektrycznych można zastępować sygnalizacją świetlną i akustyczną, lecz sprawa ta podlega każdorazowo odrębnemu rozpatrzeniu przez PRS.

8.3.3 W obwodach zasilających napędy elektryczne pomp przeciwpożarowych nie należy stosować zabezpieczeń przeciążeniowych działających na zasadzie przekaźników termicznych. Urządzenia zabezpieczające przed skutkami przeciążeń mogą być zastąpione sygnalizacją świetlną i akustyczną.

8.4 Zabezpieczenia prądnice

8.4.1 Prądnice zespołów prądotwórczych powinny być zabezpieczone przed skutkami przeciążeń i zwarc, przy czym prądnice o mocy do 50 kW (kVA) mogą być zabezpieczone tylko bezpieczeństwem.
8.4.2 Wyzwalacze zwarcio- wych ze zwłoką czasową powinny być tak dobierane, aby w każdym przypadku spodziewany prąd zwarcia w zabezpieczonym obwodzie, po upływie ustalonej zwłoki czasowej, był większy od minimalnego prądu powrot- nego wyzwalacza.

8.4.3 Jako zabezpieczenie przed skutkami zwarć elementów półprzewodnikowych w obwodach wzbudzenia prądnic należy stosować bezpieczniki topikowe. Zabezpieczenia przeciąże- niowe powinny być dokładnie skoordynowane z charak- terystykami cieplnymi półprzewodników.

8.4.4 Prądnicę zespołów prądotwórczych awaryjnego zasilania doku powinny być zabezpieczone tylko przed skutkami zwarć, przy czym należy przewidzieć świetlną i akustyczną sygnalizację przeciżenia prądnicy.

8.4.5 W obwodach zasilania rozdzielnicy awaryjnej oraz w obwodach zasilania odbiorników awaryjnych nie należy stosować urządzeń zabezpieczających unie- możliwiających natychmiastowe ponowne załączenie po zadziałaniu zabezpieczenia.

8.5 Zabezpieczenia akumulatorów

8.5.1 Baterie akumulatorów, z wyjątkiem baterii przeznaczonych do rozruchu silników spalinowych, powinny być zabezpieczone przed skutkami zwarć.

8.5.2 Każdy układ ładowania akumulatorów powinien mieć odpowiednie zabez- pieczenia przed rozładowaniem baterii na skutek obniżenia lub zaniku napięcia na wyjściu z urządzenia ładującego.

9 AWARYJNE ŹRÓDŁO ENERGII ELEKTRYCZNEJ

9.1 Wymagania ogólne

9.1.1 Na doku należy przewidzieć awaryjne źródło energii elektrycznej zdolne do równoczesnego zasilania w ciągu 2 godzin następujących odbiorników:
 .1 oświetlenia awaryjnego;
 .2 światła ostrzegawczych;
 .3 środków łączności wewnętrznej, rozgłośni dyspozycyjno-manewrowej i sygna- lizacji alarmu ogólnego;
 .4 instalacji wykrywacza pożaru;
 .5 układu sygnaizacji położenia zasuw głównych i regulacyjnych oraz układu pomiaru poziomu wody w zbiornikach balastowych;
 .6 innych odbiorników, których praca będzie uznana przez PRS za niezbędną do zapewnienia bezpieczeństwa doku, dokowanego statku i ludzi znajdu- cych się na doku.

9.1.2 Odbiorniki wymienione w 9.1.1.2 do 9.1.1.5 mogą być zasilane z własnych baterii akumulatorów o wystarczającej pojemności.
9.1.3 Zasilanie odbiorników awaryjnych powinno załączać się samoczynnie w przypadku zaniku napięcia w sieci zasilania podstawowego. Czas załączenia napięcia na szyny rozdzielnicy awaryjnej nie powinien przekraczać 0,5s przypadku stosowania baterii akumulatorów awaryjnych lub zasilaczy awaryjnych UPS oraz 30 s w przypadku awaryjnych zespołów prądotwórczych.

9.1.4 Rozdzielnica awaryjna powinna być usytuowana powyżej najwyższego pokładu ciągłego poza obrębem pomieszczeń maszynowych.

9.1.5 Należy przewidzieć środki umożliwiające sprawdzenie działania awaryjnego źródła energii elektrycznej w trakcie normalnej eksploatacji doku.

9.1.6 W sterowni lub w głównej rozdzielnicy basztowej należy umieścić wskaźnik działający przy rozładowaniu baterii akumulatorów stanowiących awaryjne źródło energii.

9.2 Oświetlenie awaryjne

9.2.1 Punkty oświetlenia awaryjnego powinny być umieszczone na drogach komunikacyjnych, przy wyjściach z pomieszczeń doku oraz przy stanowiskach sterowniczych, rozdzielnicach i w pomieszczeniach ruchu elektrycznego.

9.2.2 Awaryjne źródło energii elektrycznej powinno zapewnić oświetlenie miejsc składowania sprzętu pożarniczego i usytuowania ręcznych przycisków sygnalizacji pożarowej.

10 TRANSFORMATORY I POMIESZCZENIA TRANSFORMATORÓW

10.1 Wymagania ogólne

10.1.1 Należy stosować transformatory typu uznanego przez PRS. Zalecane jest stosowanie transformatorów suchych lub olejowych z olejem niepalnym.

10.1.2 Uzwojenia transformatorów dla górnego i dolnego napięcia powinny być elektrycznie rozdzielone.

10.1.3 Transformatory powinny być tak umieszczone, aby wszelkie urządzenia instalowane na nich, jak napęd przełącznika zaczepów, napęd wentylatorów itp. były łatwo dostępne.

10.1.4 Wszelkie wskaźniki kontrolowane podczas ruchu, jak wskaźniki oleju, temperatury itp., powinny być tak usytuowane, aby dały się łatwo odczytać z poziomu obsługi.

10.1.5 Komora transformatorowa powinna mieć wentylację wystarczającą do takiego odprowadzania ciepła, aby temperatura w komorze nie przekraczała 35 °C.
10.2 Pomieszczenia transformatorów z olejem palnym

10.2.1 Każdy transformator olejowy powinien być ustawiony w oddzielnej komorze.

10.2.2 Pomieszczenia transformatorów olejowych nie powinny mieć okien i nie powinny przylegać bezpośrednio do sterowni ani innych pomieszczeń os zalowanych.

10.2.3 Komora transformatora olejowego powinna mieć wyjście na korytarz lub do pomieszczenia mającego bezpośrednie wyjście na pokład doku.

10.2.4 Pod transformatorem olejowym należy przewidzieć ściek odprowadzający olej do zbiornika o pojemności co najmniej równej ilości oleju w transformatore. Ściek oleju powinien być odpowiednio zabezpieczony przed przeniesieniem ognia do wnętrza zbiornika ściekowego oleju.

10.2.5 Podłoga w komorze transformatora powinna mieć spadek w kierunku ścieku oleju.

10.2.6 Nie należy łączyć instalacji wentylacji komór transformatorów olejowych z urządzeniami wentylacyjnymi innych pomieszczeń.

11 URZĄDZENIA ENERGOELEKTRONICZNE

11.1 Wymagania ogólne

11.1.1 W urządzeniach energoelektronicznych należy stosować krzemowe elementy półprzewodnikowe. Stosowanie elementów innego typu podlega odrębному rozpatrzeniu przez PRS.

11.1.2 Urządzenia energoelektroniczne, w których straty mocy przekraczają 500 W, powinny mieć podgrzewanie zapewniające podtrzymanie temperatury wyższej o co najmniej 3 °C od temperatury otaczającego powietrza.

11.1.3 Urządzenia energoelektroniczne powinny mieć chłodzenie powietrzem w obiegu naturalnym lub wymuszonym.

Możliwość chłodzenia cieczą podlega odrębному rozpatrzeniu przez PRS.

11.1.4 W urządzeniach energoelektronicznych z chłodzeniem wymuszonym należy przewidzieć zabezpieczenia zapewniające zmniejszenie lub wyłączenie obciążenia przy wyłączonym chłodzeniu, a także uruchomienie sygnalizacji świetlnej i akustycznej przekroczenia maksymalnej temperatury dopuszczalnej wewnątrz urządzenia.

11.1.5 Urządzenia energoelektroniczne należy wyposażyć w odpowiednio do ich przeznaczenia przyrządy pomiarowe.

Na skalach przyrządów pomiarowych powinny być oznaczone maksymalne dopuszczalne wartości parametrów.
11.1.6 Prostowniki powinny mieć zabezpieczenia przed przeciążeniem układu prostowniczego oraz elementów transformujących. Każdy prostownik powinien być wyposażony w łącznik główny umożliwiający odłączenie urządzeń prostownika od sieci zasilającej. Urządzenia obsługowe i kontrolne powinny być zgrupowane na przedniej stronie prostownika.

11.2 Układy sterowania i sygnalizacja

11.2.1 Urządzenia energoelektroniczne powinny mieć sygnalizację świetlną o załączeniu oraz wyłączeniu obwodów siłowych i obwodów sterowania.

11.2.2 Obwody siłowe powinny być elektrycznie oddzielone od obwodów sterowania.

11.2.3 Długotrwała różnica prądów w gałęziach równoległych nie powinna być większa niż 10% wartości prądu średniego.

12 AKUMULATORY I POMIESZCZENIA AKUMULATORÓW

12.1 Wymagania ogólne

12.1.1 Właściwości akumulatorów powinny być co najmniej takie, aby po 28-dobowym postoju bez obciążenia, w temperaturze 25 ± 5 °C, samowyladowanie akumulatorów nie było większe niż 30% pojemności znamionowej dla akumulatorów kwasowych i 25% dla akumulatorów zasadowych.

12.1.2 Korki należy wykonywać z materiału trwałego i odpornego na działanie elektrolitu. Korek powinien być tak skonstruowany, aby nie dopuszczał do wytwarzania się w akumulatorze nadmiernego ciśnienia gazu.

12.1.3 Materiały stosowane do wykonania skrzynek akumulatorowych powinny być odpornie na szkodliwe działanie elektrolitu. Poszczególne ogniw wa umieszczone w skrzyniach należy tak zamocować, aby ich wzajemne przemieszczanie się było niemożliwe.

12.2 Pomieszczenia akumulatorów

12.2.1 Baterie akumulatorów powinny być zainstalowane w miejscach suchych, nie narażonych na działanie zbyt wysokich lub zbyt niskich temperatur, rozpryskowanej wody, par, pyłów oraz innych szkodliwych czynników.

12.2.2 Baterie akumulatorów o mocy mniejszej niż 0,2 kW, obliczonej z największego prądu ładowania i napięcia znamionowego, mogą być ustawione w dowolnym dobrze wentylowanym pomieszczeniu, jeżeli nie wpływają szkodliwie na inne urządzenia zainstalowane w tym pomieszczeniu. Baterie o mocy większej powinny być ustawione w dobrze wentylowanych skrzyniach lub specjalnych pomieszczeniach.
12.2.3 Akumulatorów zasadowych i kwasowych nie należy umieszczać w tym samym pomieszczeniu lub w tej samej skrzyni. Naczynia i przyrządy przeznaczone dla baterii i akumulatorów z różnymi elektrolitami powinny być przechowywane oddzielnie.

12.2.4 Wnętrze pomieszczeń lub skrzyń akumulatorów oraz wszystkie części konstrukcyjne podlegające szkodliwemu działaniu elektrolitu lub gazu powinny być odpowiednio zabezpieczone.

12.2.5 Baterie akumulatorów oraz poszczególne ogniwa powinny być dobrze zamocowane. Odległość od pokładu do korków górnego piętra ogniw nie powinna przekraczać 1500 mm.

12.2.6 Przy ustawianiu baterii akumulatorów lub poszczególnych ogniw należy zastosować podkładki i przekładki dystansowe, zapewniające ze wszystkich stron szczelinę dla swobodnej cyrkulacji powietrza o szerokości co najmniej 15 mm.

12.2.7 Baterie akumulatorów powinny być tak ustawione, aby był zapewniony dogodny dostęp do poszczególnych ogniw.

Rzędy ogniw w akumulatorach powinny być co najmniej z jednej strony dostępne dla obsługi. Szerokość przejścia powinna być nie mniejsza niż 0,5 m.

W miejscach obsługi i przejściach, przy napięciach znamionowych wyższych niż napięcie bezpieczne, należy położyć kratę lub chodnik z materiału izolacyjnego odpornego na działanie elektrolitu.

12.3 Ogrzewanie i wentylacja

12.3.1 Pomieszczenia akumulatorów, w których podczas eksploatacji temperatura może obniżyć się poniżej +5 °C, z wyjątkiem skrzyń lub szaf akumulatorowych ustawionych na pokładzie, powinny być ogrzewane. Ogrzewanie pomieszczeń akumulatorów może być dokonywane kosztem ciepłej przyległych pomieszczeń lub grzejnikami wodnymi albo parowymi umieszczonymi w tych pomieszczeniach.

12.3.2 Zawory instalacji grzewczej powinny być umieszczone na zewnątrz pomieszczeń akumulatorów.

12.3.3 Pomieszczenia akumulatorów, jak również szafy i skrzynie akumulatorowe, powinny mieć odpowiednią wentylację, zapobiegającą tworzeniu się i gromadzeniu mieszanek wybuchowych.

Instalacja wentylacyjna powinna odpowiadać wymaganiom podanym w Części V – Urządzenia maszynowe i urządzenia chłodnicze.

12.3.4 Pomieszczenia akumulatorów z wentylacją wymuszoną powinny mieć urządzenia uniemożliwiające włączenie ładowania baterii akumulatorów przed uruchomieniem wentylacji. Urządzenie do ładowania akumulatorów powinno być tak rozwiązane, aby wyłączało się samoczynnie w przypadku zatrzymania się wentylatorów.
12.4 Ładowanie baterii akumulatorów

12.4.1 Należy przewidzieć urządzenie do ładowania baterii akumulatorów. Urządzenie to powinno umożliwiać naładowanie baterii w czasie nie dłuższym niż 8 godzin. W przypadku zastosowania dodatkowej baterii, zastępującej baterię poddaną ładowaniu, czas ten może być odpowiednio wydłużony.

12.4.2 Odbiorniki zasilane z baterii akumulatorów powinny mieć zapewnioną ciągłość zasilania, niezależnie od tego, czy bateria akumulatorów jest załączona na ładowanie, czy na rozładowanie.

12.4.3 Układ ładowania powinien zapewniać pomiar napięcia na zaciskach baterii oraz pomiar prądu ładowania, a dla awaryjnych źródeł energii – również pomiar prądu rozładowania.

12.5 Instalowanie urządzeń elektrycznych w pomieszczeniach akumulatorów

12.5.1 W pomieszczeniach akumulatorów nie należy instalować żadnych urządzeń elektrycznych, z wyjątkiem opraw oświetleniowych w wykonaniu przeciwybuchowym oraz kabli prowadzonych do akumulatorów i opraw oświetleniowych.

Kable prowadzące do akumulatorów i opraw oświetleniowych mogą być układowe bez osłon, jeżeli mają metalowy pancerz lub opłat pokryty niemetalową powłoką i pancerz ten lub opłat jest skutecznie uziemiony na obu końcach.

12.5.2 Łączniki i inne elementy wyposażenia elektrycznego związane z instalacją pomieszczeń akumulatorów, jak również aparatura zabezpieczająca baterię, powinny być umieszczone na zewnątrz tych pomieszczeń.

12.5.3 Oświetlenie w pomieszczeniach akumulatorów może być wykonane przez gazoszczelne świetliki, z lampami umieszczonymi w przyległych bezpiecznych pomieszczeniach. Można również instalować w pomieszczeniach akumulatorów oprawy oświetleniowe przeciwybuchowe o budowie wzmocnionej.

12.5.4 Na drzwiach wejściowych do pomieszczeń akumulatorów lub obok nich oraz na skrzyniach z akumulatorami należy umieścić napisy ostrzegające o niebezpieczeństwie wybuchu.

13 APARATY ELEKTRYCZNE I SPRZĘT INSTALACYJNY

13.1 Aparaty elektryczne

13.1.1 Na dokach powinny być stosowane aparaty elektryczne w wykonaniu morskim. Dopuszcza się możliwość zastosowania aparatów elektrycznych w innym wykonaniu, po wcześniejszym uzgodnieniu z PRS. Aparaty elektryczne powinny być tak umieszczone w rozdzielnicach, aby były łatwo dostępne do obsługi, konserwacji lub wymiany i aby wykluczona była możliwość wykonania błędnych czynności podczas obsługi.
13.1.2 Łączniki o stykach przewidzianych do wymiany powinny być tak wykonane, aby wymiana styków była możliwa przy stosowaniu normalnych narzędzi i bez konieczności demontażu łącznika lub jego podstawowych podzespołów.

13.1.3 Wszystkie łączniki niemanewrowe, z wyjątkiem łączników instalacyjnych kabinowych, należy wyposażyć w mechaniczne lub elektryczne wskaźniki położenia styków.

13.1.4 Nastawniki i sterowniki powinny mieć mechanizmy ustalające poszczególne położenia stopni kontaktowych, przy czym położenie zerowe powinno być lepiej wyczuwalne od innych położen. Nastawniki i sterowniki należy wyposażyć w skalę oraz we wskaźnik położenia.

13.1.5 Aparaty rozruchowo-nastawcze, z wyjątkiem stosowanych do ciągłej regulacji, należy tak wykonać, aby położenia krańcowe i pośrednie na poszczególnych stopniach sterowania były łatwo wyczuwalne, a ruch poza położenia krańcowe – niemożliwy.

13.1.6 Aparaty elektryczne z napędem mechanicznym powinny działać prawidłowo przy napięciu sterowniczym od 85 do 110% napięcia znamionowego i przy zachowaniu częstotliwości znamionowej dla prądu przemiennego oraz nie powinny powodować otwierania styków przy obniżeniu napięcia do wartości 70% znamionowego napięcia sterowniczego.

13.1.7 Należy przewidzieć środki uniemożliwiające przypadkowe zadziałanie przycisków łączników.

13.1.8 Wkładki topikowe bezpieczników powinny być typu całkowicie zamkniętego. Przetopienie topika nie powinno powodować wydmuchu źuku na zewnątrz, iskrzenia ani innego szkodliwego działania na elementy umieszczone w pobliżu wkładki.

13.1.9 Wkładki topikowe powinny być wykonane z niepalnego i niehigroskopijnego materiału izolacyjnego.

13.2 Sprzęt instalacyjny

13.2.1 Obudowy sprzętu instalacyjnego należy wykonywać z materiału odpornego na korozję lub odpowiednio zabezpieczonego przed korozją, co najmniej trudno zapalnego i o dostatecznej wytrzymałości mechanicznej. Obudowy sprzętu instalacyjnego przeznaczonego do zainstalowania na otwartych pokładach i w innych wilgotnych miejscach należy wykonywać z mosiądu, brązu lub równorzędnego materiału lub z mas plastycznych o odpowiedniej jakości.

W przypadku użycia stali lub stopów aluminium, należy zastosować odpowiednią ochronę antykorozyjną.

W obudowach ze stopów aluminium nie należy wykonywać łącznych gwintowa-nych i pasowanych.
13.2.2 Obudowy opraw oświetleniowych przeznaczonych do instalowania na materiałach palnych lub w ich pobliżu należy wykonywać tak, aby nie nagrzewały się do temperatury wyższej niż 90 °C.

13.2.3 Każda oprawa oświetleniowa powinna mieć trwale oznaczone napięcie znamionowe oraz najwyższy dopuszczalny prąd lub dopuszczalną moc żarówki.

13.2.4 Tulejki stykowe gniazd wtyczkowych należy tak wykonywać, aby zapewniały stały nacisk na kolko wtyczki.

13.2.5 Nie należy stosować kołków wtykowych przecinanych. Kolki wtykowe na prąd większy niż 10 A należy wykonywać jako cylindryczne, przy czym mogą być one pełne lub rurkowe.

13.2.6 Gniazda wtyczkowe i wtyczki na napięcie wyższe niż bezpieczne powinny mieć styki do podłączenia żył kabla uziemiającego obudowy przyłączanych odbiorników.

13.2.7 Gniazda wtyczkowe z obudowami należy tak wykonywać, aby zachowywał on stopień ochrony niezależnie od tego, czy wtyczka jest włożona, czy wyjęta.

13.2.8 Wszystkie gniazda wtyczkowe o prądzie znamionowym większym niż 16 A powinny mieć wbudowane łączniki. Takie gniazda należy wyposażyć w blokadę uniemożliwiającą wyjęcie i włożenie wtyczki, jeżeli łącznik w gnieździe wtyczkowym znajduje się w pozycji „załączony”.

13.2.9 W gniazdach wtyczkowych bez blokady, odległości między stykami w powietrzu i po powierzchni materiału izolacyjnego powinny być takie, aby przy wyjmowaniu wtyczki obciążonej prądem o 50% większym od znamionowego, przy znamionowym napięciu, nie mogło wystąpić zwarcie na skutek przerzutu ňuku.

13.2.10 Gniazda wtyczkowe i wtyczki powinny mieć taką konstrukcję, aby nie było możliwe włożenie do gniazda tylko jednego kolka, ani włożenie kolka prądowego do tulei uziemiającej, a konstrukcja gniazda przeznaczonych do podłączenia silników (lub urządzeń), których kierunek obrotów (lub działanie) zależy od kolejności faz lub biegunów, powinna ponadto uniemożliwić zmianę kolejności faz lub biegunów.

Przy wkładaniu wtyczki do gniazda powinno najpierw nastąpić zetknięcie się kolka uziemiającego z tuleją uziemiającą, a dopiero potem połączenie części przeznaczonych do przewodzenia prądu.

13.2.11 W gniazdach wtyczkowych, wtyczkach oraz w gniazdach rozgałęzonych nie należy instalować bezpieczników.
14 URZĄDZENIA GRZEWCZE

14.1 Wymagania ogólne

14.1.1 Należy stosować tylko urządzenia grzewcze typu stacjonarnego.

14.1.2 Urządzenia grzewcze powinny być zasilane z przeznaczonej do tego celu rozdzielnicy grupowej lub z rozdzielnicy oświetleniowej.

14.1.3 Części nośne konstrukcji urządzeń grzewczych oraz wewnętrzne powierzchnie obudowy należy w całości wykonać z materiałów niepalnych.

14.1.4 Dopuszczalny prąd upływnościchowy w stanie nagrzanym stałych urządzeń grzewczych nie powinien być większy niż 1 mA na każdy 1 kW mocy znamionowej każdego oddzielnie załączonego elementu grzewczego, a dla całego urządzenia – nie większy niż 10 mA.

14.1.5 Urządzenia grzewcze należy tak konstruować, aby temperatura części, którymi powinien posługiwać się personel obsługujący lub dotknąć których jest możliwe, nie osiągnęła wartości wyższej od podanej w tabeli 14.1.5, przy założeniu najwyższych temperatur otoczenia podanych w p. 2.1.1.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Wyszczególnienie</th>
<th>Temperatura dopuszczalna °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rękkości sterownicze lub inne części, którymi przez dłuższy czas powinien posługiwać się personel</td>
<td>metalowe inne: 55, inne: 65</td>
</tr>
<tr>
<td>2</td>
<td>Rękkości lub uchwyty dotykane przez krótki czas</td>
<td>metalowe inne: 60, inne: 70</td>
</tr>
<tr>
<td>3</td>
<td>Obudowy ogrzewaczy wnętrzowych przy temperaturze otoczenia 20 °C</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Powietrze wychodzące z ogrzewaczy wnętrzowych</td>
<td>110</td>
</tr>
</tbody>
</table>

14.2 Ogrzewacze wnętrzowe

14.2.1 Ogrzewacze wnętrzowe powinny być przeznaczone do instalowania na stałe.

Ogrzewacze należy wyposażyć w odpowiedni układ odłączający zasilanie w przypadku przekroczenia dopuszczalnej temperatury obudowy ogrzewacza.

14.2.2 Jeżeli ogrzewacze nie mają wbudowanych łączników, to łączniki takie należy zainstalować w pomieszczeniu, w którym zainstalowano dany ogrzewacz. Łączniki powinny odłączać zasilanie na wszystkich biegunach lub fazach.
14.2.3 Konstrukcja osłon ogrzewaczywnętrzowych powinna być taka, aby kładzenie na nich jakichkolwiek przedmiotów było utrudnione.

14.2.4 Zainstalowane na stałe urządzenia grzewcze na napięcie wyższe od bezpiecznego powinny mieć osłony uniemożliwiające dostęp, bez użycia specjalnych narzędzi, do części znajdujących się pod napięciem. Na osłonach należy umieścić napisy z podaniem wysokości napięcia.

15 KABLE I PRZEWODY

15.1 Wymagania ogólne

15.1.1 Należy stosować kable i przewody typu okrągłego z materiałów samoagaszących, odpornych na działanie wody i oleju lub ognioodpornych – odpowiadające wymaganiom niniejszego rozdziału lub uzgodnionych z PRS normom krajowym i międzynarodowym (m.in. PN-EN 60092-351).

Możliwość zastosowania kabli i przewodów innego typu podlega odrębnemu rozpatrzeniu przez PRS.

15.1.2 Wymagania niniejszego rozdziału nie dotyczą kabli koncentrycznych, telefonicznych, a także kabli elektroenergetycznych na napięcie powyżej 1000 V.

15.2 Sieć kablowa

15.2.1 Wymagania ogólne

15.2.1.1 Należy stosować kable i przewody z żyłami wielodrutowymi o przekroju nie mniejszym niż:

.1 1,0 mm² – w obwodach zasilania, sterowania i sygnalizacji ważnych urządzeń oraz w obwodach zasilania innych urządzeń;

.2 0,75 mm² – w obwodach sterowania i sygnalizacji urządzeń nie zaliczanych do ważnych;

.3 0,5 mm² – w obwodach kontrolno-pomiarowych i łączności wewnętrznej, przy liczbie żył w kablu nie mniejszej niż 4.

15.2.1.2 Do zasilania urządzeń nie zaliczanych do ważnych (patrz 1.2) mogą być stosowane kable z żyłą jednodrutową o przekroju 1,5 mm² lub mniejszym.

15.2.1.3 Kable i przewody, które mogą być narażone na uszkodzenia mechaniczne podczas instalowania lub w czasie eksploatacji, powinny mieć odpowiednie pokrycia ochronne lub uzbrojenie. Jeżeli uzbrojenie byłoby niewystarczające, to kable i przewody należy odpowiednio dodatkowo osłonić lub poprowadzić w kanalach lub rurach.

15.2.1.4 Kable i przewody przewidziane do układania w miejscach zalewanych wodą powinny mieć powłoki wodoszczelne wytrzymujące ciśnienie wyższe o 30%
od możliwego najwyższego ciśnienia wytworzonego przez wodę w miejscu ich ułożenia. Uszczelnienie końców kabli powinno znajdować się ponad linią wodną.

15.2.2 Dobór kabli i przewodów

15.2.2.1 Długotrwałe dopuszczalne obciążalności prądowe kabli i przewodów należy przyjmować zgodnie z tabelami 15.2.2-1, 15.2.2-2 i 15.2.2-3.

Obciążalności prądowe podane w kolumnach 2, 4, i 6 wyżej wymienionych tabel dotyczą następujących przypadków układań kabli:

1. nie więcej niż 6 kabli należących do tego samego obwodu lub jednakowo obciążonych prądem zbliżonym do znamionowego i ułożonych w jednej lub dwóch warstwach;
2. w dwóch warstwach, lecz w ten sposób, że między każdą grupą 6 kabli, należących do tego samego obwodu lub jednakowo obciążonych prądem zbliżonym do znamionowego, są odstępy o wielkości wystarczającej do swoibodnego przepływu powietrza chłodzącego;
3. w pękach wielowarstwowo, jeżeli stopień obciążenia kabli i współczynniki równoczesności obciążenia wykluczają przekroczenie dopuszczalnej granicznej temperatury dla danej klasy izolacji.

Obciążalności prądowe podane w kolumnach 3, 5 i 7 dotyczą więcej niż 6 kabli, należących do jednego obwodu lub jednakowo obciążonych prądem zbliżonym do znamionowego oraz ułożonych w jednej wiazce w taki sposób, że nie ma swoibodnego przepływu powietrza chłodzącego wokół kabli.

Tabela 15.2.2-1
Długotrwałe obciążeńność prądowe kabli i przewodów w izolacji z polichlorku winylu dla granicznej temperatury izolacji 60 °C i temperatury otoczenia 35 °C

<table>
<thead>
<tr>
<th>Przekrój znamionowy żyły [mm²]</th>
<th>Długotrwała obciążalność prądowa w amperach, [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jednożyłowych</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1,5</td>
<td>15</td>
</tr>
<tr>
<td>2,5</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>16</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>137</td>
</tr>
</tbody>
</table>
Tabela 15.2.2-2

Długotrwałe obciążalności prądowe kabli i przewodów w izolacji z polichlorku winylu ciepłoodpornego dla granicznej temperatury izolacji 75 °C i temperatury otoczenia 35 °C

<table>
<thead>
<tr>
<th>Przekrój znamionowy żyły [mm²]</th>
<th>Długotrwała obciążalność prądowa, [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jednożyłowych</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1,5</td>
<td>22</td>
</tr>
<tr>
<td>2,5</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
</tr>
<tr>
<td>25</td>
<td>128</td>
</tr>
<tr>
<td>35</td>
<td>154</td>
</tr>
<tr>
<td>50</td>
<td>192</td>
</tr>
<tr>
<td>70</td>
<td>234</td>
</tr>
<tr>
<td>95</td>
<td>287</td>
</tr>
<tr>
<td>120</td>
<td>330</td>
</tr>
<tr>
<td>150</td>
<td>376</td>
</tr>
<tr>
<td>185</td>
<td>430</td>
</tr>
<tr>
<td>240</td>
<td>515</td>
</tr>
<tr>
<td>300</td>
<td>585</td>
</tr>
</tbody>
</table>
Tabela 15.2.2-3
Długotrwale obciążalności prądowe kabli i przewodów w izolacji z gumi etylenowo-propylenowej, polietylenu usieciowanego dla granicznej temperatury izolacji 85 °C i temperatury otoczenia 35 °C

<table>
<thead>
<tr>
<th>Przekrój znamionowy żyły [mm²]</th>
<th>Długotrwała obciążalność prądowa, [A]</th>
<th>jednożyłowych</th>
<th>dwożyłowych</th>
<th>trój- i czterożyłowych</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 5</td>
<td>6 7</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>17 14</td>
<td>14 12</td>
<td>12 10</td>
</tr>
<tr>
<td>1,5</td>
<td></td>
<td>23 18</td>
<td>18 15</td>
<td>15 12</td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td>31 25</td>
<td>25 21</td>
<td>21 18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>42 36</td>
<td>36 30</td>
<td>30 25</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>53 45</td>
<td>45 38</td>
<td>38 31</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>75 65</td>
<td>65 55</td>
<td>53 44</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>100 85</td>
<td>85 73</td>
<td>71 60</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>135 115</td>
<td>115 96</td>
<td>94 80</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>162 140</td>
<td>140 118</td>
<td>115 100</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>200 170</td>
<td>170 150</td>
<td>142 120</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>252 214</td>
<td>214 183</td>
<td>180 150</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>310 260</td>
<td>260 225</td>
<td>220 185</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>360 305</td>
<td>305 260</td>
<td>254 215</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>410 350</td>
<td>350 300</td>
<td>290 245</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>465 395</td>
<td>395 340</td>
<td>330 280</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>550 470</td>
<td>470 400</td>
<td>390 330</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>630 530</td>
<td>530 460</td>
<td>450 380</td>
</tr>
</tbody>
</table>

15.2.2.2 Dla temperatury otoczenia innej niż 35 °C dopuszczalne długotrwale obciążalności prądowe kabli i przewodów należy obliczać mnożąc wartości podane w tabelach 15.2.2-1, 15.2.2-2 i 15.2.2.-3 przez współczynniki podane w tabeli 15.2.2-4.

Tabela 15.2.2-4
Współczynniki poprawkowe dla temperatury otoczenia innej niż 35 °C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 °C 30 °C 40 °C</td>
</tr>
<tr>
<td>1.</td>
<td>Polichlorek winylu</td>
<td>60</td>
<td>1,15 1,10 0,90</td>
</tr>
<tr>
<td>2.</td>
<td>Polichlorek winylu ciepłoodporny</td>
<td>75</td>
<td>1,11 1,06 0,94</td>
</tr>
<tr>
<td>3.</td>
<td>Guma etylenowo-propylenowa, polietylen usieciowany</td>
<td>85</td>
<td>1,10 1,05 0,94</td>
</tr>
</tbody>
</table>
15.2.2.3 Dopuszczalne obciążalności prądowe kabli i przewodów instalowanych w obwodach z obciążeniem przerywany lub dorywczy należy określać mnożąc wartości w tabelach 15.2.2-1, 15.2.2-2 i 15.2.2-3 przez współczynniki poprawkowe podane w tabeli 15.2.2-5.

15.2.2.4 Przy doborze kabli do obwodów końcowych oświetlenia oraz ogrzewaczy nie należy stosować żadnych współczynników obciążenia ani równocześnie wartości w tabelach 15.2.2-1, 15.2.2-2 i 15.2.2-3 przez współczynniki poprawkowe podane w tabeli 15.2.2-5.

15.2.2.5 Kable powinny być tak dobrane, aby wytrzymywały maksymalny prąd zwarcia w obwodzie. Przy doborze należy również uwzględnić czasowo-prądowe charakterystyki zastosowanych zabezpieczeń i maksymalną wartość szczytową spodziewanego prądu zwarcia.

Tabela 15.2.2-5

<table>
<thead>
<tr>
<th>Przekrój znamionowy żyły [mm²]</th>
<th>Praca przerywana 40%</th>
<th>Praca dorywcza 30 min.</th>
<th>Praca dorywcza 60 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z powłokami metalowymi</td>
<td>bez powłok metalowych</td>
<td>bez powłokami metalowymi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z powłokami metalowymi</td>
<td>bez powłokami metalowymi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z powłokami metalowymi</td>
<td>bez powłokami metalowymi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z powłokami metalowymi</td>
<td>bez powłokami metalowymi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z powłokami metalowymi</td>
<td>bez powłokami metalowymi</td>
</tr>
<tr>
<td>1</td>
<td>1,24</td>
<td>1,09</td>
<td>1,06</td>
</tr>
<tr>
<td>1,5</td>
<td>1,26</td>
<td>1,09</td>
<td>1,06</td>
</tr>
<tr>
<td>2,5</td>
<td>1,27</td>
<td>1,10</td>
<td>1,06</td>
</tr>
<tr>
<td>4</td>
<td>1,30</td>
<td>1,14</td>
<td>1,06</td>
</tr>
<tr>
<td>6</td>
<td>1,33</td>
<td>1,17</td>
<td>1,07</td>
</tr>
<tr>
<td>10</td>
<td>1,36</td>
<td>1,21</td>
<td>1,08</td>
</tr>
<tr>
<td>16</td>
<td>1,40</td>
<td>1,26</td>
<td>1,09</td>
</tr>
<tr>
<td>25</td>
<td>1,42</td>
<td>1,30</td>
<td>1,12</td>
</tr>
<tr>
<td>35</td>
<td>1,44</td>
<td>1,33</td>
<td>1,14</td>
</tr>
<tr>
<td>50</td>
<td>1,46</td>
<td>1,37</td>
<td>1,17</td>
</tr>
<tr>
<td>70</td>
<td>1,47</td>
<td>1,40</td>
<td>1,21</td>
</tr>
<tr>
<td>95</td>
<td>1,49</td>
<td>1,42</td>
<td>1,25</td>
</tr>
<tr>
<td>120</td>
<td>1,50</td>
<td>1,44</td>
<td>1,28</td>
</tr>
<tr>
<td>150</td>
<td>1,51</td>
<td>1,45</td>
<td>1,32</td>
</tr>
<tr>
<td>185</td>
<td>–</td>
<td>–</td>
<td>1,36</td>
</tr>
<tr>
<td>240</td>
<td>–</td>
<td>–</td>
<td>1,41</td>
</tr>
<tr>
<td>300</td>
<td>–</td>
<td>–</td>
<td>1,46</td>
</tr>
<tr>
<td>500</td>
<td>–</td>
<td>–</td>
<td>1,40</td>
</tr>
</tbody>
</table>

15.2.2.6 Zamiast wykonywania obliczeń wynikających z 15.2.2.2 ÷ 15.2.2.3 dopuszczalne obciążalności prądowe dla kabli i przewodów dla różnych granicznych temperatur izolacji i różnych temperatur otoczenia przy pracy ciągłej, dorywczej i przerywanej można dobierać według Publikacji Nr 15/P – Tablice obciążalności prądowej kabli, przewodów i szyn dla wyposażenia okrątowego.
15.2.2.7 Kable połączone równolegle powinny być ułożone wspólnie jak najbliższej siebie, mieć jednakowy przekrój wynoszący co najmniej 16 mm² oraz jednakową długość. Dopuszczalne obciążalności prądowe takich kabeli należy zmniejszyć o 5% w stosunku do wartości podanych w tabelach 15.2.2-1, 15.2-2 i 15.2-3.

15.2.3 Dopuszczalne spadki napięć

15.2.3.1 Spadek napięcia na kablach pomiędzy główną rozdzielnicą basztową a odbiornikiem przy znamionowym obciążeniu powinien być nie większy niż:
- 5% dla odbiorników oświetleniowych i sygnalizacyjnych, przy napięciach wyższych niż 50 V;
- 10% dla odbiorników oświetleniowych i sygnalizacyjnych, przy napięciach do 50 V;
- 7% dla odbiorników siłowych i grzewczych, niezależnie od wielkości napięcia;
- 10% dla odbiorników siłowych na pracę przerywaną lub dorywczo, niezależnie od wielkości napięcia.

15.2.3.2 Silniki łączone bezpośrednio do sieci doku nie powinny w momencie rozruchu powodować większego obniżenia się napięcia na zaciskach silnika, niż podane w tabeli 5.3.2.

15.2.4 Prowadzenie i mocowanie kabli

15.2.4.1 Trasy kabli powinny być w miarę możliwości proste i dostępne oraz powinny przebiegać w odległości nie mniejszej niż 100 mm od źródeł ciepła.

15.2.4.2 Kabli nie należy układać w odległości mniejszej od zbiorników paliwa ciekłego lub olejów smarowych niż określono w 2.8.4. Odległości kabli od poszycia zewnętrznego oraz od grodzi i pokładów nie powinny być mniejsze niż 20 mm.

15.2.4.3 Kable z izolacją o różnych temperaturach granicznych układane we wspólnych trasach kablowych, należy tak układać, aby kable nie nagrzewały się do temperatury wyższej od dopuszczalnej.

15.2.4.4 Kabli z różnymi powłokami ochronnymi, z których mniej trwałe mogłyby ulec uszkodzeniom, nie należy układać we wspólnej rurze, wspólnym kanale ani w inny sposób wspólnie i bez zamocowania.

15.2.4.5 Żyw kabli wielożyłowych nie należy stosować do zasilania energią elektryczną lub sterowania nie związanych ze sobą odbiorników różnego przeznaczenia.

15.2.4.6 Przy zasilaniu urządzenia dwoma oddzielnymi obwodami kable tych obwodów należy prowadzić różnymi trasami, w miarę możliwości maksymalnie oddalonymi od siebie zarówno w pionie, jak i w poziomie.

15.2.4.7 W przypadku układania kabli w kanałach i innych konstrukcjach wykonanych z palnych materiałów należy zabezpieczyć te materiały w rejonie ułożenia
kabli przed działaniem ognia za pomocą odpowiednich środków ognioodpornych, takich jak wykładziny, pokrycie lub nasycenie środkami niepalnymi.

15.2.4.8 Kable urządzeń elektrycznych o napięciu znamionowym wyższym niż 1000 V nie powinny być prowadzone we wspólnym torze z kablami odbiorników o napięciu 1000 V i niższym.

15.2.4.9 Wewnętrzne promienie zagięć kabli powinny być nie mniejsze niż podane w tabeli 15.2.4.

Tabela 15.2.4

Promienie zagięć kabli

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj kabla</th>
<th>Rodzaj izolacji</th>
<th>Zewnętrzna średnica kabla (d), [mm]</th>
<th>Najmniejszy promień zgięcia kabla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Guma lub polichlorek winylu</td>
<td>taśma metalowa lub pancerz z drutów</td>
<td>dowolna</td>
<td>10 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oplot z drutów metalowych</td>
<td>dowolna</td>
<td>6 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stop ołowiu i pancerz</td>
<td>dowolna</td>
<td>6 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inne powłoki</td>
<td>do 9,5</td>
<td>3 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,5 do 25,4</td>
<td>4 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>powyżej 25,4</td>
<td>6 (d)</td>
</tr>
<tr>
<td>2</td>
<td>Tkanina nasycona</td>
<td>dowolna</td>
<td>dowolna</td>
<td>8 (d)</td>
</tr>
<tr>
<td>3</td>
<td>Izolacja mineralna</td>
<td>metalowa</td>
<td>do 7</td>
<td>2 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 do 12,7</td>
<td>3 (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>powyżej 12,7</td>
<td>4 (d)</td>
</tr>
<tr>
<td>4</td>
<td>Guma etylenowo- propylenowa lub polietylen usieciowiony</td>
<td>półprzewodząca lub metalowa</td>
<td>do 7</td>
<td>2 (d)</td>
</tr>
</tbody>
</table>

15.2.4.10 Kable powinny być odpowiednio zamocowane za pomocą uchwytów, obejm itp. elementów wykonanych z metalu lub innego materiału niepalnego lub trudno zapalnego.

Powierzchnia uchwytów powinna mieć dostateczną szerokość i nie powinna mieć ostrzych krawędzi. Uchwyty powinny być tak dobrane, aby kabel był właściwie umocowany, bez narażenia na uszkodzenie powłok ochronnych.

15.2.4.11 Kable należy tak umocować, aby mechaniczne obciążenia powstające w kablach nie przenosiły się na ich przyłącza.

15.2.4.12 Kable układane równolegle do poszycia kadłuba doku należy mocować do konstrukcji kadłuba za pomocą kaset, uchwytów lub podkładów kablowych. Powyżej pokładu bezpieczeństwa pojedyncze i małe wiązki kablowe mogą być mocowane do ścian baszt.
15.2.4.13 Kable prowadzone równolegle wzdłuż pociętych się przegród należy układać na wspornikach lub perforowanych podkładach w taki sposób, aby zapewniona była wymagana wolna przestrzeń pomiędzy kablami i przegrodami (patrz 15.2.4.2).

15.2.4.14 Tory kablewowe należy prowadzić z możliwie minimalną liczbą skrzyżowań. W miejscu skrzyżowania kabli należy stosować mostki, tak aby szczelina powietrza pomiędzy kablami i przegrodami wynosiła co najmniej 5 mm.

15.2.5 Przejście kabli przez pokłady, grodzie i ścianki

15.2.5.1 Przejście kabli przez wodoszczelne, gazoszczelne i ognioodporne grodzie i pokłady powinny być uszczelnione w taki sposób, aby zachowana została szczelność (lub odporność) grodzi/pokładu przy długotrwałej eksploatacji i aby naprężenia powstające przy sprężystych odkształceniam kabluba nie były przenoszone na kable.

15.2.5.2 Przy prowadzeniu kabli przez niewodoszczelne przegrody lub elementy konstrukcji o grubości mniejszej niż 6 mm w otworach do przejścia kabli należy umieszczać wykładziny lub tulejki chroniące przed uszkodzeniem. Przy grubościach większych niż 6 mm można nie stosować wykładzin ani tulejek, lecz należy zaokrąglić krawędzie otworów.

15.2.5.3 Kable przechodzące przez pokłady należy zabezpieczyć, do odpowiedniej wysokości od pokładu, przed możliwymi uszkodzeniami mechanicznymi, a w miejscach, gdzie uszkodzenia mechaniczne takie są mało prawdopodobne – do wysokości co najmniej 200 mm. Do uszczelnienia przejść kabli należy stosować dławnice lub masy uszczelniające.

15.2.5.4 Do wypełnienia skrzynek kablewych w grodziach wodoszczelnych należy stosować dławnice lub masy uszczelniające, mające dobrą przyczepność do wewnętrznych powierzchni skrzynek kablewych i powłok kabli, odporne na działanie wody i produktów naftowych, nie tworzące jam usadowych i zachowujące zdolność zapewnienia szczelności przy długotrwałej eksploatacji.

15.2.6 Układanie kabli w rurach i kanałach kablewych

15.2.6.1 Rury i kanały do układania kabli powinny być metalowe i zabezpieczone przed korozją od strony zewnętrznej i wewnętrznej. Wewnętrzna powierzchnia rur i kanałów powinna być równa i gładka. Końce rur powinny być tak obrobione lub zabezpieczone, aby wciągane kable nie ulegały uszkodzeniu.

15.2.6.2 Promień zgięcia rur i kanałów powinien być nie mniejszy od dopuszczalnego dla ułożonego w nim kabla o największej średnicy (patrz tabela 15.2.4).

15.2.6.3 Sumaryczna powierzchnia poprzecznych przekrojów wszystkich kabli, określana z ich zewnętrznych średnic, powinna być nie większa niż 40% powierzchni wewnętrznych przekroju poprzecznego (tj. otworu) rury lub kanału.
15.2.6.4 Rury i kanały powinny być ciągle pod względem mechanicznym i elektrycznym oraz powinny być skutecznie uziemione, jeżeli przez samo ułożenie rur i kanałów nie zostało zapewnione skuteczne uziemienie.

15.2.6.5 Rury i kanały powinny być tak ułożone, aby nie mogła gromadzić się w nich woda. W razie konieczności należy przewidzieć w rurach i kanałach otwory wentylacyjne w miejscach możliwie najniższych i najwyższych, w celu zapewnienia obiegu powietrza i zapobiegania kondensacji pary wodnej. Takie otwory można wykonywać tylko w takich miejscach, gdzie nie zwiększy się niebezpieczeństwo wybuchu lub pożaru.

15.2.7 Instalowanie kabli jednożyłowych prądu przemiennego

15.2.7.1 Nie zaleca się stosowania kabli jednożyłowych w instalacjach prądu przemiennego. Jeżeli zastosowanie takich kabli jest konieczne, to kable przewodzące prąd większe niż 20 A powinny odpowiadać następującym wymaganiom:

.1 kable nie powinny mieć pokryć z materiału magnetycznego;
.2 kable należące do jednego obwodu powinny być ułożone na tej samej trasie lub w tej samej rurze; ułożenie takich kabli w różnych rurach jest dopuszczalne tylko w przypadku stosowania rur z materiałów niemagnetycznych;
.3 uchwyty kablowe, z wyjątkiem wykonanych z materiałów niemagnetycznych, powinny obejmować wszystkie kable jednożyłowe należące do tego samego obwodu;
.4 odległości pomiędzy kablami nie powinny być większe niż jedna średnica kabla.

15.2.7.2 Przy prowadzeniu kabli jednożyłowych przez grodzie lub pokłady należy zwracać uwagę na to, aby między kabłami należącymi do tego samego obwodu nie było materiałów magnetycznych. Odległości pomiędzy takimi kablami i materiałami magnetycznymi nie powinny być mniejsze niż 75 mm.

15.2.7.3 Jeżeli kable jednożyłowe o obciążalności znamionowej większej niż 250 A ułożone są równolegle wzdłuż stalowych konstrukcji, to należy zachować pomiędzy kablami a taką konstrukcją odstęp wynoszący co najmniej 50 mm.

15.2.7.4 Przy układaniu kabli jednożyłowych o przekroju większym niż 185 mm² należy zmieniać wzajemne położenie kabli w torach nie rzadziej niż co 15 m. Przy długościach torów do 30 m można nie stosować zmian we wzajemnym położeniu poszczególnych kabli.

15.2.7.5 Kable wielożyłowe z żyłami połączonymi równolegle należy układać tak samo, jak kable jednożyłowe i do takich kabli odnosi się wszystkie wymagania dotyczące kabli jednożyłowych.

15.2.8 Przyłączanie i łączenie kabli

15.2.8.1 Końce kabli z izolacją gumową, mineralną i z powłokami metalowymi należy uszczelniać w sposób zapobiegający przenikaniu wilgoci do wnętrza izolacji kabla.
15.2.8.2 Powłoka ochronna kabla wprowadzonego do urządzenia powinna wchodzić do wnętrza urządzenia na głębokość co najmniej 10 mm.

15.2.8.3 Łączenie kabli w miejscach rozgałęzień należy wykonywać w gniazdach rozgałęźnych za pomocą zacisków.

15.2.8.4 Jeżeli przy układaniu kabli wyniknie konieczność wykonania dodatkowych połączeń, należy je wykonywać w odpowiednich gniazdach rozgałęźnych, wyposażonych w zaciski. Całe połączenie powinno być zabezpieczone przed działaniem czynników zewnętrznych. Dopuszczalność stosowania łączenia kabli w podany powyżej sposób, jak i stosowania innych sposobów połączeń kabli, podlega każdorazowo odrębnu rozpatrzeniu przez PRS.

15.2.9 Rezystancja izolacji sieci kablowej

15.2.9.1 Wartości rezyztancji izolacji sieci kablowej, mierzone w stosunku do żył sąsiadnych oraz do kadłuba doku, w zależności od wysokości napięcia oraz przeznaczenia obwodu, nie powinny być niższe od wartości podanych w tabeli 15.2.9.

W czasie badania napięcie próbne prądu stałego powinno wynosić 500 V dla obwodów o napięciu znamionowym do 500 V włącznie oraz 1000 V przy napięciach wyższych niż 500 V.

Tabela 15.2.9

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Przeznaczenie obwodu</th>
<th>Minimalna rezystancja izolacji, [MΩ], przy napięciu znamionowym:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>do 125 V</td>
</tr>
<tr>
<td>1.0</td>
<td>Zasilanie odbiorników oświetleniowych</td>
<td>0,3</td>
</tr>
<tr>
<td>1.1</td>
<td>Zasilanie odbiorników siłowych</td>
<td>–</td>
</tr>
<tr>
<td>1.2</td>
<td>Obwody układów łączności (jeżeli nie ustalono innych wymagań)</td>
<td>0,3</td>
</tr>
</tbody>
</table>

15.2.9.2 W czasie badania każdy obwód może być podzielony na dowolną liczbę odcinków przy użyciu istniejących w obwodzie łączników lub przez wyjęcie bezpieczników albo odłączenie odbiorników.

16 REZYSTANCJA IZOLACJI URZĄDZEŃ ELEKTRYCZNYCH

16.1 Wartość rezyztancji izolacji urządzeń elektrycznych względem kadłuba doku oraz pomiędzy fazami (biegunami), mierzona w czasie prób przeprowadzonych po zakończeniu budowy doku, nie powinna być mniejsza od wartości podanych w tabeli 16.1.
16.2 Wartość rezystancji izolacji nowych urządzeń elektrycznych, mierzona w wytwórni lub laboratorium badawczym, powinna odpowiadać wymaganiom odpowiednich norm, lecz przy temperaturze 25 °C ± 10 °C nie powinna być mniejsza niż:
- 10 MΩ na zimno, 1 MΩ na gorąco – dla urządzeń o napięciu znamionowym do 65 V włącznie,
- 100 MΩ na zimno, 10 MΩ na gorąco – dla urządzeń o napięciu znamionowym powyżej 65 V.

16.3 Wartości rezystancji izolacji podane w tabeli 16.1 odnoszą się do zamontowanych na doku urządzeń elektrycznych o napięciu poniżej 1000 V, natomiast przy napięciu 1000 V i wyższym rezystancja izolacji powinna wynosić co najmniej 1500 Ω/V napięcia znamionowego, lecz nie mniej niż 2 MΩ.

Tabela 16.1

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Rodzaj urządzenia elektrycznego</th>
<th>Minimalna rezystancja izolacji w temperaturze otoczenia 20 ± 5 °C i normalnej wilgotności, [MΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>na zimno</td>
</tr>
<tr>
<td>1</td>
<td>Maszyny elektryczne</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Transformatory</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Rozdzielnice</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Aparatura nastawczo-rozruchowa</td>
<td>5</td>
</tr>
</tbody>
</table>

16.4 Rezystancje izolacji urządzeń mierzone podczas przeglądów doków eksploatowanych mogą być mniejsze od wartości podanych w tabeli 16.1, lecz nie powinny być mniejsze niż 1500 Ω/V napięcia znamionowego odbiornika.

17 **UZIEMIENIA DOKU**

17.1 Dok powinien mieć specjalny przewód miedziany, o przekroju co najmniej 50 mm², do połączenia doku z uziemieniem na nabrzeżu. W przypadku zasilania doku z sieci czteroprzewodowej o napięciu 380 V prądu przemiennego, do uziemienia doku może być użyty przewód zerowy skutecznie uziemiony na doku i na nabrzeżu, mający przekrój równy przekrojowi przewodów fazowych.

17.2 Kadłub zadokowanego statku powinien być połączony z kadłubem doku za pomocą dwóch giętkich przewodów uziemiających, oddalonych od siebie, każdy o przekroju nie mniejszym niż 50 mm².